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Abstract

This work has two parts. In the first we define the LP-cohomology of certain
Gromov-hyperbolic spaces relative to a point on its boundary at infinity. This is done
in two different contexts. First we consider a simplicial version, defined for simplicial
complexes with bounded geometry. In a similar way as in the classical case we prove
the quasi-isometry invariance under a contractibility condition. Then we define a rela-
tive version of the de Rham LP-cohomology in the case of Riemannian manifolds. We
study the relationship between these two definitions, which allows to conclude that this
second version is also invariant under certain hypothesis. As an application we study
the LP-cohomology relative to a special point on the boundary of Heintze groups of the
form R"! x, R, where the derivatiori « has positive eigenvalues \; < -+ < \,_1. As

A1 n—1

a consequence the numbers -4~ ... 22— are invariant by quasi-isometries.
tr(a)? ? tr(a)

In the second part we work with Orlicz cohomology, which is a generalization of
LP-cohomology. We also define a relative version and adapt the proof of the quasi-
isometry invariance in the simplicial case. As the main result of this part we prove
the equivalence between the simplicial (relative) Orlicz cohomology and the (relative)
Orlicz-de Rham cohomology for Lie groups. An important consequence of this is the
quasi-isometry invariance of Orlicz-de Rham cohomology in the case of contractible Lie
groups.






Resumen

Este trabajo consta de dos partes. En la primera se define la cohomologia L
de ciertos espacios métricos Gromov-hiperbdlicos relativa a un punto de su borde al
infinito. Esto se hace en dos diferentes contextos. Primero se desarrolla una version
simplicial, definida para complejos simpliciales de geometria acotada. Se prueba aqui,
al igual que como se hace en el caso clasico, que esta es invariante por cuasi-isometrias
bajo cierta condicion de contractibilidad. Luego se define una versién relativa de la
cohomologia L? de De Rham en el caso de variedades Riemannianas. Se estudia la
relacion entre estas dos definiciones, lo que permite concluir que también esta segunda
versién es invariante por cuasi-isometrias bajo ciertas hipotesis. Como aplicacién de lo
anterior se estudia la cohomologia LP relativa a un punto distinguido en el borde de los
grupos de Heintze de la forma R"™! x, R, donde la derivacién « tiene valores propios
reales positivos Ay < --- < \,_;. Como consecuencia se obtiene que los nimeros

A1 An—1 . . .. ,
S son invariantes por cuasi-isometrias.
tr(a) 7 tr(a)

En la segunda parte se trabaja con la cohomologia de Orlicz, que es una gen-
eralizaciéon de la cohomologia LP. Aqui también se define una versién relativa y se
adapta la prueba de la invarinza por cuasi-isometrias de la cohomologia de Orlicz sim-
plicial. Como resultado central de esta segunda parte se prueba la equivalencia entre
la cohomologia de Orlicz simplicial (relativa) y la cohomologia de Orlicz-de Rham (rel-
ativa) para grupos de Lie. Una importante consecuencia de esto es la invarianza por
cuasi-isometrias de la cohomologia de Orlicz-de Rham en el caso de los grupos de Lie
contractibles.






Résumé

Ce texte est divisé en deux parties. Dans la premiere on définit la cohomologie LP
de certains espaces métriques hyperboliques d’apres Gromov relativement a un point
dans son bord a 'infini. Deux aspects différents sont traités. En premier on étudie une
version simpliciale de la cohomologie LP adaptée aux complexes simpliciaux a géométrie
bornée. On montre, de maniere similaire au cas classique, qu’elle est invariante par
quasi-isométries sous certaines hypotheses. Ensuite on définit une version relative de
la cohomologie L” de De Rham dans le cas des variétés riemanniennes. On étudie
la relation entre ces deux notions, on en déduit que la deuxiéme version est aussi
invariante par quasi-isometries sous certaines hypotheses. Comme application on étudie
la cohomologie LP relative a un point distingué dans le bord des groupes d’Heintze
R™ ! x, R, ou la dérivation a a toutes ses valeurs propres réelles positives \; < -+ <
An_1. Comme conséquence on obtient que les nombres tr’\(—;), e i‘r”(;j sont invariants
par quasi-isometries.

Dans la deuxieme partie on travaille avec la cohomologie d’Orlicz, une généralisation
de la cohomologie LP. On définit aussi une version relative et on adapte la preuve
de l'invariance par quasi-isometries de la cohomologie d’Orlicz simpliciale. Comme
résultat central de cette deuxieme partie on démontre I’équivalence entre la cohomologie
d’Orlicz simpliciale (relative) et la cohomologie d’Orlicz-de Rham (relative) pour les
groupes de Lie. Une conséquence importante est I'invariance par quasi-isometries de
la cohomologie d’Orlicz-de Rham dans le cas des groupes de Lie contractiles.
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Chapter 1

Introduction

1.1 Motivation

Consider the following fundamental problem of large scale geometry:

Problem 1.1.1. Given a family of metric spaces, how to determine its quasi-isometry
classes?

In this context the LP-cohomology in its different versions appears as an important
quasi-isometry invariant, and as a consequence, as a tool to give partial answers to
Problem 1.1.1.

To give a quick idea remember the classical de Rham cohomology of a smooth
manifold M. It is defined from the cochain complex of differential forms

O(M) L o) L 02 (M) L F(M) L -

and provides a topological invariant. That is, if M and N are diffeomorphic, there is
an isomorphism between the cohomology groups Hf (M) and HE (N) for every k € N.

Demanding an integrability condition to the forms on some Riemannian manifold
we put the metric in the game. One can consider, for example, the spaces of differential
forms that are LP-integrable and have LP-integrable derivative. This cochain complex
defines the de Rham LP-cohomology, introduced in the eighties ([GKS87, Pan88]).
It is possible also to consider the space of LP-integrable differential forms with L9-
integrable derivative for another positive number ¢ > 1, which defines the de Rham
LP9-cohomology (we refer to [GT06] for more details about this second notion, that
will not be studied in this work).

Under certain hypotheses one can prove that the LP-cochain complex described
above is homotopically equivalent to another cochain complex: the one that consists of
simplicial cochains on a proper triangulation of the manifold that have finite /P-norm
(see [GKS88, Pan95, Genl4]). The cohomology of this cochain complex is called the
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simplicial ¢P-cohomology of the triangulation. We refer also to [Ele97, BP03] for this
version.

Other versions of LP-cohomology have been studied. For instance, we can men-
tion the Alexander-Spanier and asymptotic LP-cohomology, defined for metric measure
spaces ([Pan95, Genl4]); or the continuous group LP-cohomology ([CT11, BR19]).

As we said, LP-cohomology provides a quasi-isometry invariant: If M and N are two
quasi-isometric Riemannian manifolds with certain properties (uniformly contractible,
bounded geometry), then for every k& € N the LP-cohomology spaces LPH*(M) and
LPH"(N) are isomorphic as topological vector spaces; or in its simplicial version, if
X and Y are two simplicial complexes equipped with certain metrics, then the ¢P-
cohomology spaces (P H¥(X) and (?H*(Y) are isomorphic (see Section 1.2.1 for the
explicit formulations). This result appears first for degree one in [Pan88|. Later it is
generalized to higher degrees ([Gro93, Pan95, BP03]).

Since different versions of LP-cohomology are quasi-isometry invariant restricted to
the respective family of metric spaces, their properties are also invariant. In particular
some numerical invariants can be obtained by studying the LP-cohomology spaces. For
example, if we consider the de Rham LP-cohomology of a Riemannian manifold M, the
sets

Anng, (M) = {p € [1,+00) : LPH*(M) =0} and
Haus, (M) = {p € [1,+0c0) : LPH*(M) is a Hausdorff space}

are also quasi-isometry invariant. In some cases the sets Anng(M) and Hausy (M) are
finite collections of intervals whose ends are numerical invariants.

In case of Gromov-hyperbolic spaces there exists an identification between the LP-
cohomology spaces in degree one and some Besov spaces defined on the boundary at
infinity, that allows to study the sets Haus; and Ann; (see [Pan88, BP03]). In degree
k > 2 the techniques are quite different. In [Pan08] and [Boul6] there are proofs of
the vanishing of the LP-cohomology via the explicit construction of primitives, which
gives a partial computation of Ann,. The non-vanishing usually involves the explicit
construction of non-zero classes. To this end one can use a duality property of LP-
cohomology (see [GT98, GT10, Pan08]): A closed differential k-form w represents a
non-zero class in LP H*(M) (for p > 1) if, and only if, there exists a sequence of L9-
integrable differential (n — k)-forms {f;},en, with n = dim(M) and % + 5 = 1, such
that

/ W/\Bj > 1 and ||dﬁj||Lq — 0.
M

In some cases (the real hyperbolic space for example) this construction is easy
(see Section 2.4), but there are some problems to extend the techniques for more
complicated spaces. For example, we can try to repeat the construction in more general
Heintze groups of the form R™ x, R, but it requires to find a sequence of L9-integrable
(n — k)-forms {B;}jen with a determined value in the support of the k-form w. Here
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the first Sobolev inequality puts a restriction on the existence of such sequence. At
this point the idea of relative LP-cohomology appears, because it is the behaviour of
the forms on a neighborhood of a special point on the boundary at infinity which
hinders the construction of non-zero classes. This idea is to consider only the forms
that vanish on a neighborhood of a fixed boundary point, which allows to avoid the
problem described above.

It is important to say that the construction of non-zero classes using duality for
Heintze groups as above can be done, but in a more sophisticated way than described.
In [Pan08] there is a construction of a special class of non-zero cohomology classes
called torsion classes.

A different idea of relative LP-cohomology is defined in [BK12]. It is done in the
simplicial case with respect to subcomplexes instead of boundary points.

Instead of the LP-norm one can consider other Luxembourg norms defined by differ-
ent Young functions. This gives the Orlicz cohomology, which is studied in recent works
(see [Carl6, GK19, Kopl17, KP15]). This allows one to obtain finer quasi-isometry in-
variants. In particular, in [Carl6] there are interesting results about the large scale
geometry of Heinze groups obtained by using Orlicz cohomology in degree one. We
expect that the study of higher degrees can give us new results too. To this end it is nec-
essary to prove some fundamental properties of Orlicz cohomology such as equivalence
theorems. We address these problems on Chapter 4.

1.2 Main definitions and results

1.2.1 LP-cohomology

Let us consider X a simplicial complex with finite dimension and a length distance
| - —-|. Assume that there exist a constant C' > 0 and a function N : [0,4+00) - N
such that

(a) all simplices in X have diameter smaller than C'; and
(b) every ball with radius r intersects at most N (r) simplices.

In this case we say that X has bounded geometry.
Fix a real number p € [1,+00) and consider for each k € N the Banach space
PC*(X) = {9 P XF SR 0(0)P < +oo}

oeXk

with the usual /P-norm

3=

16]ler = <Z |9|p> :

ocXk
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where X* denotes the set of k-simplices in X. The coboundary operator
§ = 0p : PCH(X) — (PCHFT(X)

is defined by 6;(0)(c) = 0(0o), where 0 is the usual boundary operator. It is easy to
see, using bounded geometry, that J; is continuous (see Section 3.1). The k-space of
P-cohomology of X is the topological vector space

It is sometimes convenient to consider also the k-spaces of reduced ¢7-cohomology of X
as the Banach space

fpﬁk(X) _ Ker 5k .
Im 5]{,1

Let us assume now that X is Gromov-hyperbolic. For a point £ € 0X we denote
by (PC*(X, £) the subspace of (PC*(X) consisting of all k-cochains that are zero on a
neighborhood of ¢ in X. We say that a k-cochain 6 is zero or vanishes on U C X if
for every k-simplex ¢ C U we have §(c) = 0. Note that PC*(X,¢) is not a closed
subspace, so it is not a Banach space.

The coboundary operator &, maps PC*(X, &) on (PC* (X, €); hence for every
k € N and p € [1,400) we define the k-space of (P-cohomology of X relative to £ as
the quotient

Ker 6|
PH X E) = BT |rek(xe)

Im (5’[;;01@—1()(’5) ’
In Section 2.2 we prove the following result:

Theorem 1.2.1. Let X and Y be two Gromouv-hyperbolic and uniformly contractible
simplicial complexes with finite dimension and bounded geometry, and & a fized point
in0X. If F: X =Y is a quasi-isometry, then for every p € [1,400) and k € N there
is an isomorphism of topological vector spaces between (P H*(X, &) and (PH*(Y, F(£)).

A metric space X is uniformly contractible if it is contractible and there is a function
¥ i [0,4+00) = [0,400) such that every ball B(z,r) = {2/ € X : |2/ — x| < r} is
contractible into the ball B(z,(r)).

Theorem 1.2.1 is also true for ¢P-cohomology in the classical sense, see [Gro93,
BP03]. In fact, the proof we give in Section 2.2 is an adaptation of the proof of Theo-
rem 1.1 in [BPO03].

In order to define the de Rham version of LP-cohomology consider a Riemannian
manifold M of dimension n, an integer £ =0,...,n and p € [1,400). Let us set some
definitions and notations:



(i) Denote A*(M) = U,ep A*(T:M), where A*(T,M) is the space of alternating
k-linear maps on the tangent space T,M. A k-form on M is a function w : M —
AR (M), x — w,, satisfying w, € A*(T, M) for all z € M.

(ii)) If ¢ : U C R* — M is a parametrization, then we can write the pull-back of a
k-form w on M, defined by ¢*w,(v1, ..., v) = Wy (de(v1), ..., dtb(v1)), as

1<iy <...<ip<n

where the real functions a;, _;, : U — R are called coefficients of w with respect to
the parametrization 1. We say that w is measurable if the coefficients of w with
respect to every parametrization are Borel measurable. It is said to be smooth
or a differential k-form if the coefficients are smooth. The space of differential
k-forms on M is denoted by QF(M).

111 e operator norm of a k-form w 1n at the pomt x 1s
iii) Th fa k-f in M h i i
\wl|e = sup{|wz (v, ..., v)| rv; € TyM for i =1,... k, with ||v;]|, = 1},

where || || is the Riemannian norm in T, M. We say that a k-form is LP-integrable
(resp. LP-locally integrable) if it is measurable and the function = +— |w|, is in
LP(M) (resp. LP'¢(M)). In the case p = 1 we just say that w is integrable (resp.
locally integrable). We denote by LP(M,A¥) the space of LP-integrable k-forms
on M up to almost everywhere zero forms, which is a Banach space equipped

with the LP-norm )
follr = ([ tzavia))”,
M

where dV is the Riemannian volume on M.

Consider the space
LPOF (M) = {w € Q¥(M) : ||wl| v, ||dw]|» < +00}.

It is not complete with the norm |w|r» = ||w||zr + ||dw|| e, SO We consider its completion
LPC*(M). Observe that the usual derivative is continuous in (LPQ¥(M),| |p»), thus
it can be extended to a continuous function d = dj, : LPC*(M) — LPC*T(M).

The k-space of LP-cohomology of M is

Ker dk
LPH*(M) = T

As before, we have also the k-space of reduced LP-cohomology as the Banach space




Remark 1.2.2. If w is a locally integrable k-form in M we say that another locally
integrable (k + 1)-form w is its weak derivative and we write w = dw if for every
B € Q" F1(M) with compact support

/Mw/\ﬁz(—l)’““/Mw/\dﬁ.

We say that w is closed if it have the (k + 1)-form constant zero as its weak derivative,
and that it is ezact if there exists a locally integrable (k — 1)-form 1 such that d¥ = w.
Then an equivalent definition of de Rham LP-cohomology can be done considering the
quotient Z*P(M)/BP*(M), where Z*P(M) is the space of closed k-forms and B*?(M)
is the space of exact k-forms in LP(M, A¥).

Since LP(M, A¥) is complete and contains LPQF(M), every form in LPC*(M) can
be seen as an element of LP(M, A¥).

Using Holder’s inequality (see Lemma 2.3.3) we can see that every k-form in
LPC*(M) has weak derivative in LPC*T1(M), thus the equivalence between both defi-
nitions of de Rham LP-cohomology follows from [GT10, Proposition 2], whose proof is
based on regularisation methods (see for example [GKS84, GT06]).

If M is complete and Gromov-hyperbolic and £ is a point in M, we can consider
again LPC*(M,§) the subspace of LPC*(M) consisting of all k-forms that vanish (al-
most everywhere) on a neighborhood of ¢ in M. The k-space of LP-cohomology of M

relative to & is
Ker d|chk (M,£)

prrk —
L (M7 g) Im d|LPC’f*1(M,f) '

Given such a pair (M,¢), where M has bounded geometry, there exists a pair
(X1, €) called a simplicial pair associated to (M, €), where X is a simplicial complex
with finite dimension and bounded geometry that is quasi-isometric to M, and € € 90X,
corresponds to £ by the quasi-isometry between M and X,;. The simplicial complex
X will be constructed as a nerve of a covering (see the precise definition in Section
3.2). Then we have the following result:

Theorem 1.2.3. Let M be a complete and Gromov-hyperbolic Riemannian manifold
with bounded geometry and & € OM. Take (Xp, &) a simplicial pair associated to
(M,&). Then for all p € [1,400) and k € N there is a canonical isomorphism between

LPHF(M, &) and (PH*( Xy, €).
The proof of this result is done in Section 3.2. It is again an adaptation of the proof
in the classical case (see [Pan95, Genl4]).

From the proof of Theorem 1.2.3 it follows:

Theorem 1.2.4. If M 1is a complete and Gromov-hyperbolic Riemannian manifold
with bounded geometry, then for every point & € OM and p € [1,400) the cochain
complexes (LPC*(M,§),d) and (LPQ*(M,§),d) are homotopically equivalent.

8



If M is uniformly contractible, then so is X;; therefore Theorem 1.2.3 implies:

Corollary 1.2.5. Let F' : M — N be a quasi-isometry between two complete, uni-
formly contractible and Gromov-hyperbolic Riemannian manifolds with bounded geom-
etry. Then for every point & in OM the spaces LPH*(M,€) and LPH*(N, F(§)) are
isomorphic for all p € [1,+00) and k € N.

1.2.2 Heintze groups

A result by Heintze ([Htz74]) says that every homogeneous and connected Riemannian
manifold with negative sectional curvature is isometric to a Lie group of the form N xR
with a left-invariant Riemannian metric. Here N is a connected and simply connected
nilpotent Lie group and the homomorphism 7 : R — Aut(N) satisfies d.7(t) = €',
where « is a derivation on the Lie algebra Lie(/N) with all its eigenvalues with positive
real part. Moreover, if N X, R is such a group, then there exists a left-invariant
Riemannian metric in N x, R with negative sectional curvature. A group with this
structure is called a Heintze group and will be denoted by N x, R if 7 is determined
by «a.

We are interested in the restriction of Problem 1.1.1 to the family of Heintze groups.
About this we first observe that two left-invariant metrics on a Lie group are always
bi-Lipschitz equivalent, thus the quasi-isometry class of a Lie group does not depend
on the choice of the left-invariant metric. In particular a Heintze group with any
left-invariant metric is always hyperbolic in the sense of Gromov. This also shows
that two isomorphic Heintze groups are quasi-isometric. The converse is not true in
general: every Heintze group is quasi-isometric to a purely real Heintze group, which
is determined by a derivation with real eigenvalues (see [Corl8]). If we restrict the
problem to purely real Heintze groups we have the following conjecture:

Conjecture 1.2.6 ([Corl8]). Two purely real Heintze groups are quasi-isometric if,
and only if, they are isomorphic.

This conjecture remains open in its full generality, however, there are some partial
results. For instance, this is proved in the case of Heintze groups of Carnot type
([Pan89]) and for groups with the form R™ x, R ([Xield]). See also [Pan08, SX12,
Xielba, Xiel5b, CS17] for related results and particular cases.

We are interested in finding quasi-isometry invariants related to LP-cohomology.
Using the relative LP-cohomology we obtain a proof of the following result (Section
3.4):

Theorem 1.2.7. Let G; = R" ! x, R and G5 = R x,, R be two purely real Heintze
groups. If G1 and G5 are quasi-isometric, then there exists A > 0 such that oy and Aog
have the same eigenvalues counted with multiplicity.



Observe that the Heintze groups R ! x,R and R"~! x,, R are isomorphic if A > 0.
Therefore the invariance of the eigenvalues is not true.

The original proof of Theorem 1.2.7 is done in [Pan08|. The strategy used by Pansu
is to compute the sets Anng(R""! x, R) for k¥ > 2. From this he obtains some critical
exponents related to the eigenvalues of «, which are invariant by quasi-isometry. The
difficult part of this proof is to construct non-zero cohomology classes for the exponents
where the LP-cohomology is not zero. The advantage of the relative version is that the
construction of these non-zero classes is easier than in the classical case. A proof of
Theorem 1.2.7 that uses different methods can be found in [Xiel4]. In general, it is
proved in [CS17] that Theorem 1.2.7 is true for every pair of quasi-isometric purely
real Heintze groups (G; and G,. This is done using an induction argument and results
given in [Pan89, Xiel4, LX16, Carl6).

There is an important fact about the boundary of a Heintze group G = N x, R:
All vertical lines v,(t) = (z,t), for z € N, are geodesics asymptotic to the future, they
determine a special point in 0G denoted by oco. One can also prove that all points in
O0G \ {oo} are represented by an unique vertical line (to the past), so we can write the
boundary as 0G = N U {oo}.

Yz
Ty

1.2.3 Orlicz cohomology

We say that a real function ¢ : R — [0, +00) is a Young function if:

e is even and convex;

e ¢(t) =0 if, and only if, t = 0.
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Observe that every Young function ¢ satisfies

lim ¢(t) = +o0.

t——+o00

We say that ¢ is doubling if there exists a constant D > 2 such that ¢(2t) < Do(t)
for all t > 0.

Let (Z, ) be a measure space and ¢ a Young function. The Luxembourg norm
associated to ¢ of a measurable function f: Z — R = [—00, 4+00] is defined by

1fllze = inf{”y >0: /qu (g) dp < 1} € [0, +o0).

The Orlicz space of (Z, ) associated to ¢ is the Banach space

~ {f:Z — R measurable : || f| s < +oo}
~ {f:Z — R measurable : || |0 =0}

L*(Z, )

It is not difficult to see that || f|| ¢ = 0 if, and only if, f = 0 almost everywhere.

If 11 is the counting measure on Z we denote L?(Z,p) = (9(Z) and || ||z6 = || |/¢s-
Observe that if ¢ is the function ¢ ~ [¢t|P, then L?(Z, i) is the classic space LP(Z, p).
We refer to [RR91] for a background about Orlicz spaces.

We can define the simplicial ¢?-cohomology in the same way we defined the ¢-
cohomology, i.e, for a finite dimensional simplicial complex X with bounded geometry
we set (?C*(X) = (?(X*). The coboundary operator ; : (*C*(X) — (?C*+1(X) is
continuous (see Section 4.1), then we define respectively the k-space of ¢£¢-cohomology
and reduced (?-cohomology of X as

PR X) = BT (X)) = .
Im 64 Im 654

As before, if X is Gromov-hyperbolic and £ € 90X we can consider the k-space of
(?-cohomology relative to € as

g‘i’[—[’f(X, 5) _ Ker 5’@0/&(}(@) 7
IIH 5|£¢C’“*1(X,§)

where (?C*(X€) is the subspace of (?C*(X) consisting of all k-cochains which are
zero on a neighborhood of £ in X.

A (?-version of Theorem 1.2.1 holds:
Theorem 1.2.8. Let X and Y be two uniformly contractible Gromov-hyperbolic sim-
plicial complexes with finite dimension and bounded geometry, and ¢ a Young function.

If F: X - Y and £ € 0X, then for every k € N there is an isomorphism between
(PHY(X,€) and (HN(Y, F(€).
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We prove Theorem 1.2.8 in Section 4.1. The proof of the non-relative version of the
theorem can be read in [Carl6].

If M is a Riemannian manifold, consider
LPOM(M) = {w € QM) : ||w] o, [|dw]| s < +o0},

equipped with the norm |w|.e = ||w| e + ||dw]|s, and L*C*(M) its completion. The
derivative dy, : LYC*(M) — L®C**1(M) is continuous, then we define the k-space of
L?-cohomology of M as

Kerd,
LYH*(M) =
( ) Imdk 1
and its k-space of reduced L?-cohomology as
— Kerd
LOH" (M) = — 2
Im dk—l

We also call this family of spaces the Orlicz-de Rham cohomology of M associated to
the Young function ¢.

As in the LP-case, we can also consider L?(M, A*) the space of L?-integrable k-

forms up to almost everywhere zero forms. We can see the elements of L*C*(M) as
k-forms in L?(M, A¥).

If M is Gromov-hyperbolic and & € OM, then we can define the k-space of relative
Orlicz-de Rham cohomology of the pair (M,§) for the Young function ¢ (or k-space of
L?-cohomology of M relative to &) as

L¢Hk(M’ f) _ Ker d‘L¢Ck(M,£)
Im d|L¢>Ck—1(M’£)

Y

where L?C*(M, €) denotes the subspace of k-forms in L®C*(M) which vanish on some
neighborhood of €.

As we see in Section 4.2 the generalization of Theorem 1.2.3 presents some difficul-
ties. A proof in the case of degree one can be found in [Carl6, Section 3]. We give a
proof in the case of Lie groups.

Theorem 1.2.9. Let G be a Lie group equipped with a left-invariant Riemannian met-
ric and X¢g the corresponding simplicial complex as in Section 1.2.1. Consider ¢ a
doubling Young function. Then the cochain complezes ((°C*(X¢),d), (L*C*(G),d)
and (L*Q*(G),d) are homotopically equivalent. Moreover, if G is Gromov-hyperbolic
and & is a point in OG, then the cochain complezes ((*°C*(Xg,€),6), (L*C*(G,€),d)
and (L*QF(G,€),d) are homotopically equivalent, where (Xq, &) is a simplicial pair
associated to (M,§). As a consequence the corresponding cohomology spaces are iso-
morphic.
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A consequence of the previous theorem is the quasi-isometry invariance of Orlicz-de
Rham cohomology in the case of Lie groups.

Corollary 1.2.10. If F': G; — G5 is a quasi-isometry between two contractible Lie
groups equipped with left-invariant metrics and ¢ is a doubling Young function, then
for every k € N the topological vector spaces L H*(G1) and L® H*(Gy) are isomorphic.
Furthermore, if G1 and Go are Gromouv-hyperbolic and & is a point in 0G1, then the
spaces LP H* (G4, &) and LYH*(Gy, F(€)) are isomorphic for every k.

As we said in Section 1.1, a motivation to study Orlicz cohomology is to find finer
quasi-isometry invariants related to Heintze groups. Considering a larger family of
Young functions could improve Theorem 1.2.7. It is interesting for example consider
the following question:

Question 1.2.11. Let Ny X4, R and Ny x,,R be two quasi-isometric purely real Heintze
groups. Is there a positive number A > 0 such that oy and Aas have the same Jordan
form?

As an example of application of Orlicz cohomology to the Problem 1.1.1 and in
particular to Question 1.2.11 for Heintze groups we can consider the family of doubling
Young functions given by
_ £”

- log(e + [t]71)
with p € [1,400) and k € [0,4+00). We put the lexicographic order in the family of
indices (p, x) and denote LP*H*(G) = L%~ H*(G).

Pp.(t)

For degree one consider the critical exponent
Pao(G) = inf{(p, k) € [1,+00) x [0,00) : L**H'(G) # 0}.
Then we have the following result:

Theorem 1.2.12 ([Carl6]). Let G = N %, R be a purely real Heintze group where o
has eigenvalues Ay < ... < Ag. Then

tr(a) tr(a)

paa©) = (14 s - 1))

where my is the size of the biggest Jordan subblock associated to ;.

As a conclusion of Theorem 1.2.12 one obtain that m; is invariant under quasi-
isometries between Heintze groups, which improves Theorem 1.2.7 and gives us a partial
answer to the Question 1.2.11. This motivates the study of Orlicz cohomology in higher
degrees.

Other results related to Question 1.2.11 and the large scale geometry of Heintze
groups in general are obtained using a local version of Orlicz geometry in [Carl6].
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Chapter 2

Preliminaries

The aim of this chapter is to set notation and state some lemmas that we will use in
the following chapters.

2.1 Quasi-isometries and Gromov-hyperbolic spaces

Let X and Y be two metric spaces, we denote the distance by |- — - | in both cases. A
map F': X — Y is a quasi-isometry embedding if there exist two constants A > 1 and
€ > 0 such that for all z,2’ € X,

ANz —2/| —e<|F(x) — F(2)| < Mz —2'| +e

We say that F is a quasi-isometry if we also have that F'(X) is C-dense in Y for some
C' > 0, which means that for every y € Y there exists x € X such that |F(x) —y| < C.
In this case we say that X and Y are quasi-isomtric spaces.

Remark 2.1.1. Consider F': X — Y and G : Y — Z two quasi-isometries. It is easy
to see that:

(i) Go F: X — Z is a quasi-isometry.

(i) There exists a quasi-isometry F : Y — X such that F o F and F o F are at
bounded uniform distance from the identity. We say that F' is a quasi-inverse of
F.

These two conditions give us an equivalence relation between metric spaces. In this
context Problem 1.1.1 appears naturally.

There is a natural relation between quasi-isometries: If F;G : X — Y are two
quasi-isometries, we write F' ~ G if the uniform distance between F' and G is bounded.
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Under this equivalence the quasi-inverse of a quasi-isometry is unique, then we can
consider the group of quasi-isometries of some metric space X as

QI(X)={F:X — X : Fis aquasi-isometry}/ ~ .

Observe that the composition of quasi-isometries passes to the quotient; hence it defines
a product on QI(X). We also use the notation

QIX,)Y)={F:X —Y:Fisa quasi-isometry}/ ~ .

Here we find another general problem linked to quasi-isometries:

Problem 2.1.2. Given a metric space X, how does QI(X) act on it?

A geodesic metric space X is Gromov-hyperbolic if there exists 6 > 0 such that
every geodesic triangle A = [z,y] U [z, z] U [y, 2] is contained in a d-neighborhood of
any two of its edges. In this case we say also that X is d-hyperbolic in the sense of
Gromov.

The proof of the following theorem can be found in [GAIH90, Chapter 5].

Theorem 2.1.3. Let X and Y be two geodesic metric spaces and F : X — Y a
quasi-isometry. If Y is Gromov-hyperbolic, then so is X.

There is a general definition of Gromov-hyperbolic spaces for non-geodesic spaces.
We will not give it, but the reader can find it in [GdIH90, Chapter 2].

The boundary at infinity (or simply boundary) of a geodesic and proper Gromov-
hyperbolic metric space X is defined as the set of equivalence classes of geodesic rays
in X up to bounded Hausdorff distance. We denote it by 0.X.

The set X = X U0X has a natural topology for which it is a compactification of
X. Indeed, it can be seen as the topology induced by a metric d on X such that for
all z, 2" € X,

d(z,2') < a® min{1, |z — 2|}, D = dist(xo, [z,2]), (2.1)

where a > 0 and zy € X are fixed, and [z, 2] denotes a geodesic (or a geodesic ray or
a geodesic segment) between x and z’. If one of these points belongs to the boundary
we put |x — 2’| = +00. See for example [BHKO1, Chapter 4] for more details. If f and
g are two real functions with the same domain we write f =< ¢ if there exists a uniform
constant C' > 1 such that C71f < g < Cf.

The following figure shows such a neighborhood of a point ¢ € 9X in X, which
approximates a ball with centre ¢ for the distance (2.1).
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If F: X — Y is a quasi-isometry between two Gromov-hyperbolic metric spaces,
then it induces a homeomorphism between their boundaries 0F : 0X — 0Y (see
[GAIH90, Chapter 7,Section 4]). In order to simplify the notation we will also write
F(&) = 0F(¢) if € is a point in 0X. It follows directly from the construction of the
boundary map that if G ~ F, then OF = 0G.

2.2 Continuous cochain complexes

A continuous cochain complez is a sequence of topological vector spaces {V*}rcz and
continuous linear maps {dy }rez as in the following diagram such that Im dy_; C Ker d,
for all k € Z. We denote it by (V*,d.) or (V*,d).

d—3 d—2 d_ 1 Cl1 dg

_ _ d
N Vs V-t N VAR v s /2

The k-space of cohomology of the continuous cochain complex (V*, d) is the quotient
Kerd,/Imdy_;. This is a topological vector space with the quotient topology. We can
consider also the k-space of reduced cohomology as Ker di./Im dj_;. In order to simplify
the notation, we will say cochain complex to refer to a continuous cochain complex.

A cochain map between two cochain complexes (V*,d) and (WW*,0) is a family of
continuous linear maps fj, : V¥ — W¥ such that §; 0 fi = fry10di. In general we write
f = fr if it is not necessary to specify its degree. A cochain map induces naturally a
continuous linear map between the corresponding (reduced) cohomology spaces.

Two cochain maps f and g from (V*,d) to (W*,0) are homotopic if there is a family
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of continuous linear maps h = hy, : V¥ — W*=1 such that hjyiody, +0p_10hi, = fr — gx
for every k € Z. In this case we say that h is an homotopy between f and ¢. If f and
g are homotopic, then they induce the same map in (reduced) cohomology.

d V,Q d Vil d VO d Vl d V2 d

Do e A e A A

AU I / /e SNCINGN 7 7o SN 7 7NN 7 78 WA 7 g

We say that two cochain complexes are homotopically equivalent if there exist
cochain maps f : (V*,d) — (W*,0) and g : (W*,§) — (V*,d) such that f o g and
go f are homotopic to the identity. In this case f and ¢ induce isomorphisms of topo-
logical vector spaces between the corresponding (reduced) cohomology spaces. This
defines an equivalence relation between cochain complexes.

A cochain complex (V*, d) retracts to a subcomplex (U*,d) (U* C V* for all k € Z)
if there exists a cochain map r : (V*,d) — (U*,d) such that i o r is homotopic to the
identity, where i is the inclusion, and the homotopy h satisfies h(U*) C U*~! for every
k € N. This implies that (V*,d) and (U*,d) are homotopically equivalent.

By a bicompler we mean a family of topological vector spaces {Ck’f}(k’g)eNQ and
continuous maps d : C** — CF1¢ and d” : C** — C***1 such that all rows and
columns (C**, d') and (C**,d") are cochain complexes. We denote it by (C**, d', d").

The following lemma will be important in Sections 3.2 and 4.2.

Lemma 2.2.1 (Lemma 5,[Pan95]). Let (C**,d',d") be a bicomplex with d'od"+d"od" =
0. Suppose that for every { € N, the compler (C**,d') retracts to the subcomplex
(B :=Kerd'|coe —0—0— ---). Then the complex (D*,5), defined by

D"= @ C* ands=d +d",
k+0=m

is homotopically equivalent to (E*,d").

pO_—% . pt_%._p2

EOC 00 4o _d oo d

d// d// ) d// d//
Elc C«o,l' d 01,1' d 02,1' d
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Proof. For every K € N let (C'[*I’;], d',d") be the subcomplex of (C** d’,d") defined by

Cht if k< K
Ciy =3 Kerd|exe ifk=K .
0 iftk>K

Observe that it is a bicomplex because of the identity d’ o d” + d” o d' = 0.

m kL
= D o

k+l=m

For every m € N let

One has Dy € Dl for every K and Uk>0D[ = D*. Moreover, by definition of
E*, one has DE‘O] = E*. Therefore, to prove the lemma, it will suffice to show that Df}(]
retracts to DE‘K_I] for every K > 1.

To construct the expected homotopies we first define some special maps denoted
by A" and b. In order to simplify the notation we set

C=Pc*, c= @ ', amde=EPE"

>0 k>1,6>0 £>0

We also write C = Cy U C;. By assumption, for every ¢ € N, the complex (C** d')
retracts to the subcomplex (£ — 0 — 0 — - -+ ). Thus there exist continuous operators

h:C,—C, and ¢ :Cy— &,
such that
(i) d oh'+h od =1d on Cy, and
(ii) A od =1d —io g on Cy,

where i : £ — Cy is the inclusion. We extend h’ to the whole space C by letting b’ =0
on Co.

Define b: C — C by

e b=—(d"oh +hod")onC, and
e b=1i0¢pon (.
On the subspace C; relation (i) implies that
doh'+h od=1Id—b.
On Cy relation (ii) implies that
doh'+hWod=hod=Id—iop=1d—b.
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Therefore the relation d o h'+ h'od = Id — b is valid on the whole space C. This implies
in particular that b commutes with 9.

We are now ready to show that DE‘K] retracts to DFKA] for every K > 1. Since
.h/(CM) C CkL for k > 1 and W/(C%*) = 0, we can consider hig) : Dy — D["Igl the
induced operator.

The map b satisfies b(C*¢) C C*=141 for k > 1 and b(C%) € C%. Moreover for
K > 1, one has
b(Ker d'|oxe) C Kerd'|or—1.e41.

Indeed, if dw = 0, then one has also d'd"w = 0. The definition of b and the relation
(i) yield :

dbw =—(dd"Ww+dhWd"w) =d"dhVw—dNd'w=d"w—d'w=0.

Therefore b sends every D[”;{] to Df}éfl] for K > 1. Let big : DE‘K} — DFKA] be the
induced operator. As we saw above, it commutes with 4. Since o h' +h'od =1d — b
on the whole space C, we get

and also
5 @) h/[K—l] + h/[K—l] (¢] 5 - Id - b[K] o Z‘[Kfl],

where ijx_q; : DE‘K_I] — DFK] is the inclusion.

R R R
DO Pz Dl PZ e D2 P2 D3
(K] 5 (K] 5 (K] 5 (K]

G

) )
Dixc—yy == Djje_yy = Dy — Dji_y,

h h n

)

All maps in the diagram are continuous, then the lemma follows. O

2.3 Some properties about integration of forms

Suppose that M is a smooth manifold of dimension n and (Z, i) is a measure space.
We say that a function ® : M x Z — A¥(M) is a measurable family of k-forms on M
if for all z € Z the function x + @, .) is a k-form on M and the coefficients of ® with
respect to every parametrization (depending on z € M and z € Z) are measurable.

We say that ® is integrable on Z if for every x € M, the function

2= | P|(z,2) = SUP{|P(a2) (V15 - -y vp)| t v € T M for i =1,...  k, with |lv]l, = 1}
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belongs to L'(Z, 11). In this case we can consider the k-form

Wy (V1 ..., 0k) = </z CD(w,Z)du(z)) (U1, ..., 0) = /Z(D(x’z)(vh coup)du(z). (2.2)

Observe that for all x € M,

o < [ Blinduz) = 190 o
Lemma 2.3.1. Let ® : M x Z — A*(M) be a measurable family of k-forms such that:

e [t is integrable on Z, then we can define w as in (2.2).

e For every fized 2 € Z the k-form x — @, .y is locally integrable and has weak
derivative d®, ).

o The function z — |d®|(, .y belongs to L'(Z, i) for every x € M.

Then w s locally integrable and has weak derivative
oy — / 4oy d(2). (2.3)
z

The previous lemma follows directly from definition of weak derivative.

To prove that a k-form w : M — AF(M) is smooth it is enough to verify that for
every set of k vector fields {X1,..., X)} the function

f(z) = we(Xyi(2), ..., Xp(x))

is smooth on M. A sufficient condition for f to be smooth is that for every set of
vector fields {Y7,...,Y,,} there exists

LYm U LY1f<x>
for all z € M. The Lie derivative with respect to the field Y is defined by

Lof) = 5| flale)

where ¢, is the flow associated to Y.

From the above observation and the classical Leibniz Integral Rule one can conclude
the following lemma:

Lemma 2.3.2. Let M and N be two Riemannian manifolds and ® : M x N — A*(M)
a smooth family of k-forms on M, i.e. a measurable family of k-forms which coefficients
are smooth functions on both variables. Suppose that one of the following conditions

holds:
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(i) For every x € M, the form y — @, has compact support.

(i) There is an isometric embedding ¢ - N — N, such that «(N) is an open subset
of the Riemannian manifolds N with compact closure, and ® is a restriction of
a smooth family of k-forms ® : M x N — A&(M).

Then the k-form w defined as in (2.2) is smooth and

dwx:/ d(b(r,y)va(y)a
N

where d®(, ) denotes the derivative of the differential k-form x — ®,,) for a fived
yEN.

If w is an integrable n-form in L'(M, A™) and M is orientable, one can define its
integral on M in the classical way, which satisfy

1

As we have mentioned before we have the Holder’s inequality in the case of mea-
surable forms:

< flwflzr-

Lemma 2.3.3. Let M be a Riemannian manifold, and p and q two real numbers in
(1,+00) such that % —l—i = 1. Then if we take w € LP(M,A*) and 8 € LP(M,A"F),
with k =10,...,n, the form w A [ is integrable and

lw A Bl < lwllzell Bl za-

To prove the previous lemma is enough to observe that |w A 5], < |wl|.|B|. for all
x € M and use the classic Holder’s inequality.

The contraction of a k-form w on M with respect to a vector field Y is the (k —1)-
form defined by

tywe (v, v1) = we(Y(2),01, ..., 0p—1)
forall z € M and vq,...,v_1 € T, M.

We have the following version of Fubini’s theorem:

Lemma 2.3.4. Let M be an orientable smooth manifold of dimension n and I C R
an interval. Denote by % the field on I x M defined by

(s,x) (1,0) e Rx T, M =T 5 (I x M).

If w is an integrable (n + 1)-form on I x M, then

o= L () s

where ng : M — I x M, ns(x) = (s, ).
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2.4 Construction of non-zero classes using duality

Let us consider the following result mentioned in Section 1.1:

Lemma 2.4.1 ([Pan08]). Consider M a complete orientable Riemannian manifold of
dimension n and two real numbers p,q > 1 such that %—i—% = 1. Let w be a LP-integrable
closed differential k-form on M. Then

(i) w represents a non-zero class in Lpﬁk(M) if, and only if, there exists a closed
(n — k)-form g € LIQ"*(M) such that [,,w A B #0.

(ii) w represents a non-zero class in LP HX(M) if, and only if, there exists a sequence
of differential (n — k)-forms {f;}jen such that

/ wAB;>1 and ||dBj||L« — 0.
M

We use the previous lemma to construct non-zero cohomology classes for some
examples.

Example 2.4.2. Consider the real hyperbolic space H* = R"™! x (0, +00) with the

metric given by
VIWy + A UpWy
(V, W) (zp) = " ,
for (z,t) € H" and v = (vy,...,v,) and w = (w1, ..., wy) two vectors in T, »H" = R™.
Take the closed differential forms

Wap) = d(f(x)g(t)day A -~ ANdag_y) and Bue = d((x)(t)mr(z)drgin A= A da,_y),

where 7, : R"™! — R is the projection onto the k' coordinate, and f, : R*~! — [0, 1]
and g, : (0,+00) — [0, 1] are smooth functions such that

e f has compact support and [, , f(z)dz = 1.

e g(t) = 0 if ¢ is bigger than some ¢; > 0 and ¢(¢) = 1 if ¢ is smaller than some
to > 0.

e o(t) =0 if ¢ is bigger than ¢, > 0 and ¢(t) = 1 if ¢ is smaller than ¢;.

e ) is constant 1 on the support of f and has compact support.

Observe that

afg dr; Ndxy A -+ N dxg_y
ox;

()

n—1
lwlle < Ifg' dt Aday A Adaga|le +
i=k Lp
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The first term is finite because f¢’ has compact support. Using that |dz;, A---Adx;, | =
t* we can estimate the others:

=
L Hn 8%

-
+oo
/ /Rn 1 8:62

(9_1;9 dZIZ',L N d.fl VANRIEIVAN dl’kfl
‘ / PRt
Lr JO

g( )ptpk dV(x,t)

( VPAPE et

o0x;

This is finite if p > ”T’l Moreover

Bl < 3|5 DeOma)

+W( )y ()| | day A --- N dy 1!“

3¢

N dxpig AN d$n—1|(x,t)

+ ¢ () mi ()@ (O] |dt A dga A A dn |
k
(Z 2 (yeltymlo)] + ho(a)eld)] + w(xm(x)so'(m) .
From this one can see that ||3|zq is finite for every ¢ > =, which is equivalent to
P< i

Ifpe (”;1, = 1) the n-form w A § is integrable by Holder’s inequality; hence by

Stokes theorem we have

/w/\ﬂ—hm wAp

520 JRn—1x(s,t1)

< lim fdey N - Ndx,_1 =1.
s—0 R"_IX{S}

By Lemma 2.4.1 we have that the reduced LP-cohomology in degree k > 2 is not
zero for all p € ("Tl Z—l) This interval is a maximal open interval in Annf(H") =
[1,400) \ Anny(H"). In fact, if p ¢ [%1, #=1], then LPH*(H") = 0 (see for example

[Boul6, Corollary BJ).

In the case k = 1 we can look at [BP03, Theorem 0.3]. Since there exists an Ahlfors-
regular visual metric of dimension n — 1 on OH" such that it is a Loewner space, then
LPH'(H™) = 0 if, and only if, p < n — 1.

Observe that the real hyperbolic space H" is isometric to the group R ! x4 R
with the left-invariant metric induced by the Euclidean inner product on the tangent
space at the identity.
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Example 2.4.3. Consider now the Heintze group G = R3 x, R with

We equip G with the left-invariant metric induced by the Euclidean inner product on
the tangent space at the unity, which is given by

—t —t —3t
(v, w>(x,t) =e Vw1 t+ € Vwy + e TVU3W3z + V4Ws.

The volume form on G is dV (z,t) = e *'dxdt, and the operator norms of the funda-
mental horizontal forms on G are:

b |dxl|(a:,t) = |dx2|(a:,t) = et7 |dI3|(a:,t) = 63t7

4t

o |duy A dug|y < €, |dry A dxs|pp = |dre A dsley =< e*, and

o |dxy Adxo A dws| < e

See Lemma 3.4.4 for more details about these estimates.

We can consider the forms

Wy = d(f(x)g(t)dzy A dxs) and By = d(¥(x)e(t)ms(x)),

as in the Example 2.4.2 (the functions g, ¢ are extended to R by putting g(t) = ¢(t) = 1
for all ¢ < 0). Using the same argument as above we can prove that LPFB(G) # 0 for
all p € (1, g) But this interval is not maximal in Ann§(G). Indeed, because of [Pan08,
Proposition 27] the interval [2,2) is contained in Ann§(G) and (2, 4+00) C Anns(G).

In order to improve the result we can try exchanging S by a sequence {f5;};jen
satisfying the second condition of Lemma 2.4.1.

Consider ; = ¥; dxs, where V;(x,t) = 1 if (z,t) € supp(fg). We suppose that
B; € LINYG) for every j € N and ||dB;||p« — 0.

Observe that

oV ;
dB;llza > H 5 ] dz; N dxs (1=1,2). (2.4)
7 La
Moreover
oV ; A 1
H 4 83:3 (@,8)| |dw; A daslf, ,dV (@, t)

q

q
a$i L4 G
:/ 4979 dgadt.
R

v,
('7 5y L3, t)
8xi LQ(R2)

J
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Since 3; € LIQY(G), the function h{x?) b= U,(-, -, x3,t) belongs to the Sobolev space
Wh4(R?) for almost every z3 and t. Then if ¢ < 2 the first Sobolev inequality says
that there exists a constant C' > 0 depending on ¢ such that

‘|th3,t) HLq* (R2) S CHVh;Z:Emt) HLQ(R2)

for almost every x3 and t, where ¢* = 2q/2 — ¢ (see for example [Hei01]). Thus

/R/R"hzr3,t)‘|Lq*(R2)et(4q5)dx3dt§C/R/RHVh'ZxS’t)HLq(RQ)et(ZLq5)d$3dt—>o,

which contradicts the assumption that ¥; = 1 on the support of fg. For this reason

we find this method useless to construct non-zero classes for p € (2, %)

2.5 Orlicz spaces and doubling Young functions
In this section we see some properties of Orlicz spaces that will be useful in Chapter
4. Consider ¢ a Young function and (Z, ;) a measure space.

Remark 2.5.1. If K > 1 is any constant, the identity map Id : L¥(Z, u) — L?(Z, )
is clearly continuous and bijective, thus it is an isomorphism by the open mapping
theorem. This implies that the norms || ||y xs and || ||+ are equivalent for all K > 0.

Lemma 2.5.2. If ji is finite, then L®(Z, ) C LY(Z, i) and the inclusion is continuous,
with norm bounded depending only on u(Z) and ¢.

Proof. Let f € L®(Z, ), then

HfHL¢=inf{7>0:/Z¢(£> du§1}
Zinf{7>0:u(Z)¢ (ﬁ/zgdu) < 1}

From this we obtain || f||zr < u(2)é=*(1/u(Z)||f|lLe- O

Remember the definition of doubling Young function that we give in Section 1.2.3.
It is not difficult to prove the following equivalence.

Lemma 2.5.3. A Young function ¢ is doubling if, and only if, there exists an increasing
function Dy : [2,400) — (1,+00) such that for allt € R and s € [2,4+00),

¢(st) < Di(s)o(t).

There are some special properties that have Orlicz spaces associated to doubling
Young functions, as we can see in the following lemma:
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Lemma 2.5.4. Let ¢ a doubling Young function, then

(i) f e L®(Z, ) if, and only if, [, ¢(f)du < +o0.

(i) fo— [ in L9(Z,p) if, and only if, [, ¢(fu— f)dp — 0.

Proof. (i) (=) Since f € L?(Z, pu) there exists v > 2 such that [, ¢ (%) dp < +o0.

o éwﬂWSmewL¢G)ms+m,

where D, is the function given in Lemma 2.5.3.

(<) We have that ¢(§) < @(f) € LMZp) for all v € [1,+00), and that

10) (%) — 0 almost everywhere when v — 4o00. Because of the Dominated

Convergence Theorem we have

/gb (i> dp — 0, when v — +o00.
z v

Thus f € LY(Z, ).

(ii) (=) Suppose that || f, — fllz» < 1. Using the convexity of ¢ we obtain

/¢ wwwzfm/ Qﬁ]ﬂ)wgmﬁmm%a

(<) Given € € (0,1) we have

/Z¢(f"€_f>du<Dl 1/e/¢ Fdp — 0.

This implies that there exists ng € N such that for all n > ny,

/cb(f"_f)dﬂél,
VA €

which means that ||f, — f||z¢ < € for all n > ny.
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Chapter 3

Relative LP-Cohomology and
Application

We begin this chapter working with the simplicial relative /P-cohomology. In the first
section we prove Theorem 1.2.1. Then, in the second section, we explain how to
construct a simplicial pair associated to a Gromov-hyperbolic Riemannian manifold
with bounded geometry and a point on its boundary. We prove Theorem 1.2.3 after
some previous lemmas.

If p,qg > 1 satisfy % + i = 1, there exists a duality relationship between LP and
Li-cohomology in the classical sense. There are some difficulties to adapt this result
to our relative version, however we can give some ideas related to this subject. This is
the contents of Section 3.3.

Finally we study the LP-cohomology of a purely real Heintze group of the form
G = R"! %, R relative to the point co € G, which allows us to prove Theorem 1.2.7.

3.1 Quasi-isometry invariance of simplicial relative
¢P-cohomology

Consider X a finite-dimensional simplicial complex with bounded geometry. Observe
that every element 6 € /PC*(X) has a natural linear extension 6 : Cy,(X) — R, where

Ck(X) = {Ztiai:tlu"'7tm ER,O’l,...,O'm GXk}
=1

The support of a chain ¢ = > " t;0; in Cy(X), with ¢; # 0 for all i = 1,...,m, is
le| = {o1,...,0m}. We also define the uniform norm and the length of ¢ by

llclloo = max{|t1],...,|tm|}, and £(c) = m.
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Proposition 3.1.1. The coboundary operator & : (PC*(X) — PCH(X) is well-
defined and continuous.

Proof. Let 6 be a k-cochain in £2C*(X), then

p

15015 = S s@©@Pr =3 18@0)r=3 lo[ 3 r

geXk+l ceXk+1 ceXkt1 TE|00|
p
=(k+2" > k+2 (B+2770 > > 16(r)
oceXk+1 T€|do| oceXk+1 re|do|
SNk 42771 > (0P = (16115,
TeXk

where the first inequality follows form Jensen’s inequality and the second is a con-
sequence of bounded geometry. The function N is as in the definition of bounded
geometry, which implies that N (1) is a bound for the number of simplices o € X**!
such that |do| contains a fixed simplex 7 € X*. O

As we said, we will prove Theorem 1.2.1 in a similar way as in [BP03]. For this
purpose we first prove some lemmas.

Lemma 3.1.2 ([BP03]). Let X and Y be two uniformly contractible simplicial com-
plexes with bounded geometry. Then, any quasi-isometry F: X — Y induces a family
of maps cp : Cr(X) — Cp(Y) verifying:

(i) Ocp(c) = cp(do) for every o € X*.

(i) For every k € N there exist two constants Ny and Ly (depending on k and the
geometric data of X, Y and F') such that

ler(0)llo < Nk, and U(cp(0)) < Ly,

for all 0 € X*.

Proof. We consider for both complexes X and Y the same constant C' > 0 and function
N :]0,+00) — N corresponding to their bounded geometry. We assume also that both
spaces are uniformly contractible for the same function 1.

For v € X° we define cp(v) as a vertex of a simplex containing F(v). Because of
the bounded geometry we have |F(v) — cp(v)| < C. We extend linearly cg to Co(X).

Since F'is a quasi-isometry and X has bounded geometry, then

sup{lep(ay) —cp(a )| :a € X'} < +oo,
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where a_ and a, denote the vertices of a. This supremum depends only on the geo-
metric data of X, Y and F. Using again the bounded geometry of ¥ we can find a
chain cp(a) € C1(Y) with dcp(a) = cp(as) — cp(a—), length bounded by a function of
lcr(ay) —cr(a-)], and |[cr(a)lle = 1.

o F'(x0)

Zo

h CF(ZL’l)

1)
T

Now we take k > 2. Assume that ¢ is defined in degree m for every m < k — 1.
If o € X*, then cp(00) is a cycle (Ocp(00) = cp(0%0) = 0) and it is contained in a
ball with radius kC'Ly_;. Since Y is uniformly contractible, cp(do) is the boundary
of a chain contained in a ball B with radius ) (kC'Ly_1). Its length is bounded by the
number of simplices in B, which is less than N(¢(kCLy_1)). We define cp(o) as such
a chain that minimize ||cp(0)||s. Since |[cp(00)||o0 < kNg_1 we have that ||cr(0)]|c is
bounded independently on o. O

Lemma 3.1.3 ([BP03]). Consider F,G : X — Y two quasi-isomelries between uni-
formly contractible simplicial complexes with bounded geometry. If F and G are at
bounded uniform distance, then there exists an homotopy h : Ci(X) — Cri1(Y) be-
tween cgp and cqg. This means that

(i) Oh(v) = cp(v) — cg(v) if v € X°, and
(ii) Oh(o) + h(0o) = cp(0) — cgl(o) if o € Xk, k> 1.

Moreover, ||h(0)||e and €(h(c)) are uniformly bounded by constants N} and L), that
only depend on the geometric data of X, Y, F and G.

Proof. Since F' and G are at bounded uniform distance, for all £ > 0,

sup{diam(|cp(0)| U |ca(0)]) : 0 € X*} < +o0.
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If v is a vertex in X° we choose a chain h(v) such that dh(v) = cp(v) — cg(v) with
length bounded depending on |cg(v) —cg(v)| and ||h(v)]|s = 1. Note that it is possible
using an argument as in the previous lemma.

Suppose that h is defined in degree m for every m < k — 1 and consider o € X*.
Since c¢r and ¢ commute with the boundary, we have

d(cg(o) — cp(o) — h(Do)) = cc(do) — cp(0o) — Oh(Da) = 0.

This means that cg(0) —cp(0)—h(00) is a cycle contained in a ball with radius bounded
independently of o € X*. As in the previous lemma we can find h(c) € Cj1(Y) with
boundary cg (o) — cp(0) — h(00), and ¢(h(0)) and ||h(0)||c uniformly bounded. O

Now assume that X is Gromov-hyperbolic. We are ready to prove the invariance
of relative ¢P-cohomology.

Proof of Theorem 1.2.1. We define the pull-back of a cochain 0 € f’}(g)Ck(Y) as
F*0 =0ocp.

Observe that F* depends on the choice of cp.
Let us first show that F*0 € (PC*(X):

1E0l, = Y [F0(0)P = Y [6(cr (o))"

oceXF oceXk
P
<D ON| D o
oeXk T€lcr(0)]

SNED D Uer(o)P O

ocEXk T€|cp(0)|

SNLT ) DL

oc€Xk 7€|ep (o)

Since F' is a quasi-isometry and the distance between cp(v) and F(v) is uniformly
bounded for all v € X°, we can find a constant Cj, such that if dist(oy,09) > C}, then
cr(o1) Ncp(oy) = 0. Using the bounded geometry of X we have that every 7 € Y*
satisfies 7 € |cp(0)| for at most N(C + Cy) simplices o € X*. This implies that

IF*0)I7, < NELEIN(C+ Cy) > [0(r)
TEYk

= NELE'N(C + Cy) 1015,

This also proves the continuity of F™.
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Now we prove that for every 6 in E%(g)ck(Y), the cochain F™0 is zero on some

neighborhood of €. Assume that € is zero on V C Y, a neighborhood of F(£). If
o € X¥ and v € X° is a vertex of o,

du(cp(o), F(v)) < dg(cr(o),cr(v) + du(cr(v), F(v)), (3.1)

where dy denotes the Hausdorff distance. By construction of cp, distance (3.1) is
uniformly bounded by a constant Cj. We define V = {y € Y : dist(y,V°NY) >
C~'k} Since F is a quasi-isometry, there exists U C X a neighborhood of ¢ such that
F(UNX) C V. For every k-simplex o C U, we have c¢p(0) C V and then F*§(c) = 0.
We conclude that F™*6 vanishes on U.

By definition we have d F* = F*¢, which implies that F* defines a map in coho-
mology denoted by F7# : U H "(Y) = £ZH"(X). We have to prove that F# is an
isomorphism.

Claim: If F;G : X — Y are two quasi-isometries at bounded uniform distance,
then F# = G7.

We have to construct a family of continuous linear maps Hj : Eﬁ’,(g)Ck(Y) —
(C* (X)), k > 1, such that
(i) F*0 — G*0 = H,60 for all 6 € E’}(OCO(Y).
(ii) F*0 — G*0 = Hy1100 + 6H.0 for all 6 € E’;(g)Ck(Y), k> 1.
We define
Hp0: X¥ = R, Hf(0) =0(h(0)),

where h is the map defined in Lemma 3.1.3. Using the same argument as for F*, we
can prove that H0 is in (?C*~1(X) for every 0 € E%(f)Ck(Y) and Hj, is continuous. To

see that Hyf vanishes on some neighborhood of £, observe that h(o) have uniformly
bounded length, which implies that dy(cg(0), h(o)) is uniformly bounded.

Moreover, if k = 0 we have
(F*0 — G*0)(v) = 0(cr(v) — cg(v)) = 0(Oh(v)) = d0(h(v)) = H160(v).
Andif k> 1,

(F"0 — G*0)(0) = b(cr(0) — ca(0))

= 0(9h(0) + h(9o))

= 00(h(0)) + 6(h(97))
= Hk+159( ) + Hk (80)
= Hy160(0) + 0HB(0).
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This proves the claim.

As a consequence of the claim we have that F# does not depend on the choice
of cp. Moreover, if T : Y — Z is another quasi-isometry, a possible choice of the
function crop is the composition ¢ o cp. In this case (7o F))* = F* o T* and then
(T o F)# = F# o T#.

Finally, if F : Y — X is a quasi-inverse of F, then by the claim (F o F)# and
(F o F)# are the identity in relative cohomology. Since (F o F)# = F" o F# and
(FoF)#=F#oF", the statement follows. O

Let us see a simple example of ¢P-cohomology of a Gromov-hyperbolic simplicial
complex relative to two diferent boundary points.

Example 3.1.4. We consider for n > 3 the space

~ H"UI0, +0c0)
B JZONO

X :
where xg is a point in H". We equip X with the length distance making the inclusions
H" — X and [0, +00) — X isometric embeddings. A triangulation of H" with bounded
geometry (for which z, is a vertex) and the usual graph structure on [0, +00) (where
N is the set of vertices) induce a simplicial structure on X with bounded geometry and
uniformly contractible. Observe that X is a Gromov-hyperbolic space and its boundary
can be write 0X = S"' U {£y}, where the sphere S"! is identified with the boundary
of H™ and & is the point corresponding to the geodesic ray [0, +00).

As we saw at the end of Example 2.4.2, ¢*H'(H") = 0 if p € (1,n — 1). From
this it is easy to see that (PH(H", &) = 0 for every £ € OH" and p € (1,n —1). We
will use these facts to prove that ?H'(X, £) is not isomorphic to /P H' (X, &) for every
pe(l,n—1)an ¢ € OH".

Consider in ?(N) the subspaces
e V={{a}nen:Ino €N, a, =0Vn>ng}, and
o W= {{an}nen € '(N): 3", yan =0}.

We define the linear map f: V — PC1(X, &) by

0 if e C H"
a, ife=[n,n+1] C[0,+00)

e = {

Claim 1: f induces a linear isomorphism between V/(V N W) and PH (X, &).

First we prove that f passes to the quotient. It is clear that f({a,}nen) is always
a cocycle. Take {a,}nen in VN W and denote 6 = f({a,}nen). We define a 0-cochain
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¥ on X by

I(z) = 0 it z € H"
v = la; ifx=nel0,4+o0)

By definition 69 = 6. Since {a, }nen belongs to V N W, we have that ¥(n) = 0 if
n is big enough, then o is in (PC°(X,&y). Therefore 6 is zero in cohomology and f
induces a linear function

v/ (VW) — PHY (X, &).

It is easy to see that f is inyective: Suppose that there exists ¥ € PC°(X, &) such
that 00 = f({an}nen). This cochain must satisfy 9¥(0) = 0 and J(n) = 0 if n is big
enough, which implies that {a, }n,en € W.

Now we prove that f is surjective. Take a l-cocycle 6 € PCH (X, &). Since
(PHY(H™) = 0 there exists 8 € (?C°(H") such that §3 = 0|g~. Consider the following
1-cocycle in (PCY(X, &):

f(e) if e C H"

O(e) =< —p(0) if e = [0,1]
0 if e=[n,n+ 1] with n >0

The cocycle 6 is zero in P H' (X, &) and 0 — 6 belongs to Im f, thus 7(f) € Im f (where
7 PCYHX, &) — (PH' (X, &) is the canonical projection). This finishes the proof of
the Claim 1.

A consequence of Claim 1 is that dim(¢?H'(X,&;)) = 1 because VNW is the kernel
of the linear map ¢ : V — R defined by

{an}nGN Z Ap.

neN

Now we want to study PH (X, &) for £ # &.

Claim 2: If § € PCY(X,€) there exists a 1-cochain 6 such that 7(6) = 7(0) and

In the same way as we proved that f is surjective we can find a cochain 6 €
(*C*(X,€) such that 7(f) = 0 and f|gn = Olun (here we use that PH'(H", &) = 0).
Then we can take § = 6 — 6.

Let us consider the map g : (*PH'(X,&) — (#(N)/W, where g(f) is the class of

{0([n,n + 1)) }nen, denoted by [0([n,n + 1])],en. Here 0 is as in Claim 2.
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Claim 3: g is well-defined, linear and surjective.

To prove that g is well-defined it is enough to show that if 6y, 0, € (PC* (X, €) are in
the same cohomology class and |z = Os|gn = 0, then {0, — Oy([n, n + 1]) }pen € W.
We know that there exists f € PC°(X,€) such that §3 = 6, — 0;. Observe that
B(0) = 0 and for every n > 1

B(n) = (6 — 02)([n — 1,n]).

Since [ belongs to /7 we have that lim, ., 6(n) = 0 and then

The linearity and surjectivity of g is clear.

Observe that W C (}(N) C ¢°(N) and the inclusion is strict in both cases. This
and Claim 3 imply that

dim(PH'(X, €)) > dim(P(N)/W) > 1 = dim((PH'(X, &)).

3.2 Equivalence between simplicial and de Rham
relative L’-cohomology

We say that a Riemannian manifold has bounded geometry if:

e its sectional curvature is bounded from below and above, and

e it has positive injectivity radius.

We refer to [D092, GHL90] for more information about these two conditions.

Let M be a complete and Gromov-hyperbolic Riemannian manifold with bounded
geometry, and £ a point in M. Consider on M a uniformly locally finite open covering
U such that all non-empty intersections U; N ... N Uy, with Uy, ..., U, € U, are bi-
Lipschitz diffeomorphic to the unit ball in R™ (n = dim(M)) with uniform Lipschitz
constant. We say that the covering U is uniformly locally finite if there exists a constant
C' > 1 such that every point x € M belongs to at most C' elements of . Such a covering
can be constructed using a triangulation of M such that every simplex is uniformly
bi-Lipschitz homeomorphic to the standard Euclidean simplex of the same dimension.
For every vertex we consider U(v) the interior of the union of all simplices containing
v. Then we can define U as the collection of sets U(v). In [Att94] it is shown how to
construct a triangulation with this property in the case of bounded geometry. Another
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possibility is to consider the nerve of the covering constructed in [Genl4, Property
4.6.11].

For each ¢ € N we consider the set
U ={Un..NU#£0D:U; el foralli=0,...,0}.

Let X be the nerve of the pair (M,U), this is the simplicial complex such that:

e There is an /-simplex with vertices Uy, ..., U, if Uy N ...NU, € U,. Thus we
identify X¢, with U,.

e Every simplex is isometric to the standard Euclidean simplex of the same dimen-
sion.

Observe that X, is quasi-isometric to M. Moreover, there is a family of quesi-
isometries F' : X, — M verifying F(U) € U for every vertex U € U, that we call
canonical quasi-isometries. These canonical quasi-isometries are all at bounded uni-
form distance from each other; thus they represent an unique element of QI(X,;, M),
and therefore they induce the same map on the boundary. Denote by £ € X, the point
corresponding to & by a canonical quasi-isometry. We say that (X M,E) is a stmplicial
pair corresponding to (M, §). By construction, if M is uniformly contractible, then so
is X M-

The strategy to prove Theorem 1.2.3 is to apply Lemma 2.2.1 to some convenient
bicomplex. Before that we have to prove a pair of lemmas that will be used in the
proof.
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Lemma 3.2.1 (Lemma 8 in [Pan95]). Let B be the unit ball in R™, then the cochain
complex (LPC*(B),d) retracts to the subcomplexr (R -0 —0— ...).

Proof. Fix x € B. Suppose that y : Q%(B) — Q*"1(B) is defined for all £ > 1 so that
for every (k — 1)-simplex 7 C B, we have

/Tx(w)—/CTw

for every differential k-form w. The cone C' is defined as follows: If 7 = (xq, ..., zx_1),
then C. = (z,x¢,...,25-1). The function x will depend on z, we write x, = x if
necessary.
Claim:
xd + dy = 1d. (3.2)

We take o a k-simplex in B and w € Q%(B), then

Joor= [ do= ],

where the last equality comes from Stokes theorem. If 0o = 75 + ... + 7, we have

[%W#ﬁé/ wsz—i/_xw)
- [ = [on [

Since the equality holds for every k-simplex we conclude (3.2) (see for example [Whi57,

Chapter 1V]).

For © € B we consider ¢ = ¢, : [0,1] Xx B = B, ¢.(t,y) = ty + (1 — t)x and
- B — [07 1] X B7 Ut(y) = (tuy)

[0,1] x B/\
1 A

/j

7(B)
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We look for an explicit expression for x(w):

/ /w—/ w—/ gpw—//nswgow
(0,1]x o) 0,1]xo

In the last equality we use Lemma 2.3.4. We conclude that
1
@) = [ g ews
0

The family of k-form (z,t) — nf(L% p*w) satisfies the condition (i) of Lemma 2.3.2

because it is smooth in both variables and the interval [0, 1] is compact; thus x is
smooth. By definition and the claim it satisfies equality (3.2). Observe that if w is
closed, then x(w) is a primitive of w, so it is enough to prove the classic Poincaré’s
lemma. However, in our case we need an LP-integrable primitive, so we take a conve-
nient average. Define

1
h(w) = W/éff Xa(w)d,

where %B =B (O7 %)

Since (x,y) — Xu(w), is smooth in both variables we can use again Lemma 2.3.2
to show that h belongs to QF(B). Notice that this works because we take the integral
on a ball with closure included in B. Moreover, the derivative of h is

1
dh(w) = W /éB dx.(w)dz.

Using (3.2) we have
dh(w) + h(dw) = w (3.3)

for all w € LPQ¥(B) with k > 1.

We want to prove that h is well-defined from LPQF(B) to LPQ*1(B) and that it
is continuous. To this end we first bound |y, (w)|, for y € B and w € QF(B). Since
Lo @twisa form on [0, 1] x B that is zero in the direction of 2, we have for all ¢ € (0, 1)
and y € B,

7 (L@ w)ly = [ea 9wl

Then we can compute

|ta 9wty = supfleo @ wiry) (01, vk-1)] < loa] = - = Jloea |l = 1}
= sup {|<p*w(t’y) (%,vl, . ,vk,1)| ol =+ = |loeea]] = 1}
= sup{|wy(,y) (Y — @, tvr, . tog—1)| 2 o]l = - = [log—a || = 1}

< 7y — @fwlpe)-
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From this and the assumption that ¢ € (0,1) we get
1
@l < [ o= alleleends (3.4)
0

Consider the function u : R" — R defined by u(z) = |w|, if 2 € B and u(z) = 0 in
the other case. Using (3.4) we have

1
Wﬂ@BHhWMﬁé/ /jw—xW@y+ﬂ—¢MMMm
iBJo
We write z = ty + (1 — t)z, then

Vol Bl < [

1
/ 1= — ylu(z)(1 — £)"dtd=
B(ty,1-t) Jo

1
< / / Lpty—o(2)]z — ylu(z)(1 — )" Lded=
B(y,2) J0O
1

_ /B SIS < /0 Lyt (2)(1 — t)”ldt) dz.

Observe that 1,14 (2) = 1 implies that [z — y| < 2(1 —t). Then we have

! 1—3|z—y| 1
/ Lp(ay,1-0(2)(1 — )" 7ldt < / (1—t)™"dt = / r e <
0 0 %

|z—y| |Z_y|n

The notation f =< g means that there exists a constant C' > 0 such that f < C'g. This
implies

VOB, = [ - af (),

B(y,2)

Using that [ By.2) |z — y|'""dz is finite and Jensen’s inequality we obtain

B < / = — gz
B(y,2)

Therefore

1w, = / h(@)dy < / / = — ()P dady
B B JB(y,2)

dy
<[ ey ( / —) dz < w2,
/B(o,s) Blz—y["t k

Using the identity dh(w) = w — h(dw) we have

[dh(w)lr < llwllze + [[A(dw)lr = fw]ie
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We conclude that h is well-defined and bounded for k£ > 1.

If w = df for certain function f we observe that

M (40 prar) W) = dfpe) (y — ) = (f 0 7)' (1),
where v is the curve (t) = . (t,y). Then x.(df)(y) = f(y) — f(x), from which we get

1

" =1~ Fas)

1
2

We define h : LPQY(B) — LPQ1(B) =R by

n(f) v01 /f,

which is crearly continuous because %B has finite Lebesgue measure. Therefore the
identity (3.3) is true for every k > 1 and w € LPQF(B), and h is continuous in all
degrees.

Note that, since h is bounded, then it can be extended continuously to LPC*(B)
for every k > 0. The equality (3.3) is also true for every w € LPC*(B), then it is the
retraction we wanted. [l

Lemma 3.2.2. Let f : M — N be a bi-Lipschitz diffeomorphism, where M and N are
Riemannian manifolds. Then the pull-back f* : LPC*(N) — LPC*(M) is well-defined
and continuous. Furthermore, the operator norm of f* is bounded depending on the
Lipschitz constant of f, n = dim(M), p and k.

Proof. Suppose that L is the Lipschitz constant of f. Let w € LPC*(N), by Remark
1.2.2 we can see w and its derivative as elements of LP(N, A¥), then

|f*wl|, = inf { | ffw, U e Uk U0 €T M
ol okl
:mf{wﬂ)(d””f(vl) d””f(”’“)>‘:v1 vkeTM}

D\ Mol el AR
<Lkmf{w ) (w_w_)'ww - xN}
= O\ Tl Twellyw /] =@
= L*|wlf@)

Then
#7601 = [ 1FwldVia(o) < [ DMelf, L ac (]dVas(e)
M M

=L“WAM%MMM=L“WMMP
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Using that the pull-back commutes with the derivative, the same argument shows that
ldf w7, = 1 f*dwllz, < LTPED || dwl[,. O

Proof of Theorem 1.2.3. We define the bicomplex (Cg . d',d") as follows:

First consider

Okt = {w e [T e @) - 3 lwolly, + lldwol, < +oo},

Ueld, Uely

with the norm

lwll = (Z inp>;+ (Z |dwfzp>;.

Uely Uely

Then C’f *“ is the subspace of all elements w € C*¢ for which there exists V a neig-

borhood of ¢ in M such that wy = 0 for all U C V. We define the derivatives
d:Ct— O and d: CPF — G

o Ifwe 05,47 then (dw)y = (—1)%dwy.

o Ifwe P and W € Upy, W =UgN...NUp, then

l+1

(d”(U)W = Z<_1)i(onﬁ...ﬁUi_1mUi+1m...ﬂU[+1)|W'
=0

It is easy to show that d’ and d” are continuous and satisfy d' o d” + d” o d' = 0.

Observe that the elements of Ker d'| o are the functions g € [[y¢,, LPC°(U) sat-
13

isfying the following conditions:

e There exists V C M a neighborhood of ¢ such that gy =0if U C V.

e dgy = 0 for all U € Uy, then gy is essentially constant.
* D veu, Jo lgu|PdV < 4o0.

Using the construction of X, and the fact that U is bi-Lipschitz diffeomorphic (with
uniform Lipschitz constant) to the unit ball in R™ we have that Ker d'| ,0.¢ is isomorphic
¢

to (PCY(X, €). Indeed, the map
PCUX,€E) — Ker d|cos, 01— g,
where g¥ is constant §(U), satisfy
inf{Vol(U) : U € U}# [l < llg" | < sup{Vol(V) : U € U370
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Observe that d” coincides with the derivative § on 2C*(X, &) via this identification,
ie. g% =d"g°.

On the other hand the elements of Ker d”| gko are of the form w = {wy fyey with

wU‘UﬂU’ = wU"UﬁU’ ae fUN U/ 7é (Z)

We can take a k-form @ in LPC*(M) such that @|y = wy a.e. for all U € U. This
k-form is zero in some neighborhood of £, then the identity is an isomorphism between

Kerd”| ro and LPC* (M, €). Tt is clear that d’ = d in this case.
:

LPCO(M,€) —*= LPCM (M, €) -
Ker d//‘CO’O ¥ Ker d//‘C;’O a4
M E ~
PCO( X, ) —— Ker dl|Cg,o( C’g’o d 051,0 p
[5 E ; i
. ., ,
ngl<XM7€> —— Ker d,‘cg,l( Cg’l Cél’l
lé ld// d"’ 4"

Claim 1: For a fixed /¢, (C?e, d') retracts to (Kerd'| o0 =0 —=0—---).
3

Lemma 3.2.1 implies that there exists a family of bounded maps h : LPC*(B) —
LPC*1(B) such that hod+doh = Id. We denote LPC~*(B) = Rand d : L’C~(B) —
LPC°(B) the inclusion. Consider for every U € U, a smooth bi-Lipschitz function
fu : U — B with constant K (which does not depend on U). Then we define H :
Okt _y oL

¢ ¢ y * —1\x*
(Hw)u = foh((fy ) 'wo).
We write Cgl’é := Kerd'| 0. Using Lemma 3.2.2 and the definition of 2 we can see
that H defines the retraction we wanted. In particular it is bounded.

Claim 2: For a fixed £, (C’g’*, d") retracts to (Kerd”| 40 =0 —0— ---).
¢

e

We have to construct a family of bounded linear maps P : Cg " C’f (> 0)
such that Pod” 4 d” o P =1d, where Cf" ' = Ker d”|ro and d” : C&™1 — ¥ is the
3

o
inclusion.
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Consider {ny}vey a partition of unity with respect to Y. If £ > 1 and w € C’k’g,
then we define

(PUJ)V = Z NuwWunv

veu

forall Ve U,_1. For w € C’?’O and V € U we put

(PCU)V = Z nUwU|V'

veu

A direct calculation shows that P is as we wanted.

Finally, aplying Lemma 2.2.1 we obtain that (D*,d) is homotopically equivalent to
(Ker d'| 00 d") and (Ker d” o0 d'). The proof ends using the above identifications. [

Observe that in the previous proof we can consider the bicomplex given by the
elements of

Okt — {w € H LPQP(U) - Z |wu b + [|dwy ||b < +oo}

Uely Uely

which vanish on a neighborhood of £. Following the same arguments (which involves
the observation that Lemma 3.2.1 is true also for the complex (LPQ2*(B),d)) we can
prove the homotopy equivalence between the cochain complexes (/PC*(Xyy,€),d) and
(LPQ*(M,€),d), and as a consequence Theorem 1.2.4.

3.3 Some duality ideas

In [GKS86] and [GT10] the following fact is proved: If M is a complete and orientable
n-dimensional Riemannian manifold, then for every p € (1,4+00) and k =0, ..., n, the

dual space of Lpﬁk(M ) is isometric to Lqﬁnfk(M ), where % + % = 1. The isometry is
induced by the pairing ( , ) : LP(M, A*) x LY(M, A" %) — R defined by

<w75>=/MwAB, (3.5)

wich is well-defined by Holder’s inequality. The proof uses that LP(M, A¥) and LI(M, A"~F)
are Banach spaces. The relative case is a very diferent context, however it makes sense

to ask the following question: What would be the natural pairing for LPQ*(M, &) (or
LPCk (M, €)) instead of LP(M, A*)?

The answer seems to be related to the idea of local cohomology, which can be found
in [Carl6]. Let us see the following definition: Consider M a complete and orientable
Gromov-hyperbolic Riemannian manifold and £ a point in M. A differential m-form [
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on M is locally Li-integrable with respect to & if for every V C M, a closed neighborhood

of £, we have that
1
181 Lapr\v = (/ |5\gdﬂc> < +o00.
M\V

Then we define L, Q™ (M, §) as the space of all differential m-forms which are locally
Li-integrable with respect to & € OM. Observe that Holder’s inequality implies that
the bi-linear pairing

() LPQR(M, &) x LE Q" F(M, &) = R (3.6)

loc

is well-defined by the expression (3.5) if é + % = 1. This allows to consider the induced
linear transformations p,, : L Q" *(M, &) — R, p, = (w,-) and vg : LPQ*(M, &) — R,
vg = (-, B).

3.4 An application to Heintze groups

Let G = R"! x, R be a purely real Heintze group where o has positive eigenvalues
A < --- < A\,_1. The product on G is given by

(z,t) - (y,8) = (z + ey, t + 5).

We denote by L, and R, the left and right translations by (z,¢) on G.

Observe that a neighborhood system for the point co € 9G is given by the com-
pactification in G of sets of the form G\ (Bg x [T, —00)), where By = B(0, R) € R"!
for some positive number R, and 7' € R. This will be important to work with the
LP-cohomology relative to co.

Br
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If {, )o is an inner product on TyG such that the factors R"~! and R are orthogonal,
then it determines an unique left-invariant metric on G defined by

<(U1,U2), (wh w2>>(9&,t) = <(d0L(x,t))_1(U1, Uz)a (doL(x,t))_l(wh w2)>o
= (e "1, e w1 )g + \vgwy,

where vy, w; € R" 1 vy, ws € R and )\ is a fixed positive real number. In particular, if
v is a horizontal vector in T, »G (i.e. v = (v1,0)), then the norm associated to (, ).z
of v is

[l = lle™vllo.

For k =1,...,n — 1 consider the number wy, = wg(a) = A\; + - -+ + A\g. The aim of
this section is to prove the following result:

tr(a)

Theorem 3.4.1. Let k = 2,...,n — 1, then LPH*(G,00) = 0 for all p > o=
LPH*(G,00) # 0 for all p € (tr(a) tr(“)} .

w7 W1

and

LPHYG,00)#0 |/ LPH*(G,00) =0
1 tr(a) tr(a)

Wi Wp—-1

The following lemma is proved more generally in [Corl8, Lemma 6.D.1].

Lemma 3.4.2. Consider two Heintze groups G1 = Ny X4, R and Gy = Ny x4, R. If
Gy and Gy are quasi-isometric, then there exists a quasi-isometry F' : G; — Gy such
that F(00) = oo.

Proof. Since N; (i = 1,2) acts on G; by isometries, there are two possibilities:

o QI(G,;) acts transitively on 0G;, or

e oo is fixed by QI(G;).
If GG; is in the first case, then G5 too and every quasi-isometry between G; and G
carries oo to co. In the second case it is enough to take a quasi-isometry F' : G; — G
and then H € QI(Gz) such that H(F(o0)) = oo. The composition H o F' is the
quasi-isometry we wanted. O]

Combining the previous lemma with Theorem 3.4.1 and Corollary 1.2.5 we deduce:
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Corollary 3.4.3. Let G; = R"! x4, R and Gy = R"! x,, R be two purely real

Heintze groups. If G1 and Go are quasi-isometric, then for allk = 1,...,n — 1, we

tr(or) _ tr(oag)
have W) = walas)”

Note that Theorem 1.2.7 follows as a direct consequence of Corollary 3.4.3, more

precisely we have that «; and EEZ;;QQ have the same eigenvalues.

As we saw in Theorem 1.2.4, we can restrict to differential forms. In this section we

use the notation LP H*(G, o) to mean the cohomology spaces of the cochain complex
(LPQ* (G, 00),d).

We start with the diagonalizable case because it is easier from the technical point
of view and it is enough to show the main ideas of the proof of Theorem 3.4.1.

3.4.1 Diagonalizable case

Let us suppose that « is diagonalizable. The Lie bracket in Lie(G) is defined by
(X, T), (Y, 9)] = Ta(Y) — Sa(X),
where X € R"! and T € R. Note that if 3 = P~'aP with P € GL(R,n), then
Lie(R" x5 R) — Lie(R"! x,R), (X,T) — (PX,T)

defines an isomorphism of Lie algebras. This implies that both Heintze groups are
isomorphic and then quasi-isometric. So we can suppose that « is diagonal with the
eigenvalues in increasing order on the diagonal.

Denote by dx and dt the Lebesgue measure on R ! and R respectively. Consider
{e1,...,e,} the canonical basis of R" and {e},... e’} its dual basis. The differential
I-form dx; on G (i = 1,...,n) is defined by (dz;) s = e;. We will be a bit ambiguous
and also use the notation dt = dz,. The left-invariant metric we consider in G is the
one generated by the Euclidean inner product on T,G = R".

Left translations acts on 1-forms in the following way:
n—1 n—1
(2.0) (Z a; dx; + a, dt) = Z ei(a; o Lizy)) dx; + (ay 0 Lgy)) dt.
i=1 i=1

In particular LZ,E t)d:vi =ethidy; foralli=1,...,n—1.

Observe that if w is a k-form on G, then
|l = |La,t)w|0

for all (x,t) € G. Thus the operator norm is left-invariant.
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Lemma 3.4.4. (i) |dzi, A. .. Adwi, | gy < et for1 <ip < ... <ip <n-—1.

(i) The volume form on G is dV (x,t) = ™ dx; A ... Adx,,.
Proof. (i) On A*(TyG) we consider the inner product ((, ))o that makes the basis

e N...Ne; 1<y <...<i,<n}orthonormal. On A*(T(,G) we define
(, >>(m £ such that for all 6 v € A*(T(,nG) we have

(B @ty = (Liwn By Lizy1))o-

This means that the inner product is left-invariant.

The left-invariant norm induced by this inner product is denoted by | ;4. Since
the operator norm | | is also left-invariant, there exists a constant C' > 1
independent of the point (x,t) € G such that,

C_1| |(x,t) < [ ](x,t) < O| |(xt)
As a consequence it is enough to prove (i) for [ |e.4:

[(L(az t)dxll) A (L?m,t)dxlk)]o
( iy de“) VANRERIVA (Gtkik dl’zk)]o

= !Qat i) [dpy A Adag,)o
—e t(Aig o+ Aay)
(ii) Here it is enough to prove that ™ ®dx; A ... A dzy,(v1,...,v,) = 1 for some
positive orthonormal basis {v,...,v,} in T(; »G, for example
{e”‘lel, Lette et

[]

Let V' be the vertical vector field defined by V(z,t) = e,, and ¢ (z,s) = (z,s + t)
its associated flow. We say that a k-form w is horizontal if tyw = 0. Observe that if

W = Z ailwikdxil VANPIRAN dl‘ik, (37)

1<ir<...<ig<n
then w is horizontal if, and only if, all coefficients a;, _;, ,, are zero.

Lemma 3.4.5. If w is a horizontal k-form, then for allz € R* 1, s € R and t > 1 we
have
07w (a5) X € W] ,s40)-
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Proof. Suppose that w is as in (3.7). Using the norm [ ] as in Lemma 3.4.4, we
have

[gpi‘w]?w) B Sa i (T, s 4+ ) [dey, Ao A dxik]?x,s)

WPy Xlan, a@ s+ 0P, A Ndz ]

_ Z lai, i (2, s+ t)’2€23()\i1+...+>\ik)
N lay, (x5 + t>|262(8+t)(>\i1+---+/\ik)

— E eft()\i1+...+)\ik) j eftwk.

]

We prove now the first part of Theorem 3.4.1 following the idea of [Pan08, Propo-
sition 10].

Proposition 3.4.6. Let k =2,...,n, then LPH*(G, 00) = 0 for all p > )

Wr—1 "

Proof. Take w a closed form in LPQF(G,00). We want to construct an LP-integrable
differential (k — 1)-form ¢ such that dv = w.

Set
+oo
V= —/ oy Lyw dt. (3.8)
0
Observe that, since w vanishes on a neighborhood of co, we have the pointwise conver-
gence of the above integral, so ¥ is well-defined as a k-form.

Since tyw is a horizontal form, by Lemma 3.4.5 we have that for all (x,s) € G and
t>0,
|90:LVW|(x,s) < Ce " |LVw’(r,s+t)7

for some constant C. Then
Iiovlly = [ leiil gV @)
G

< C/Getpw’“]ww\’(’wﬁ)eStr(a)dxds

—C /C; e—t(pwk —tr(a)) |va|€x78+t)6_(8+t)tr(a)dl'd8

= C/ e~ tpwe=trl@)|, L lP AV (z, s 4 t)
G

(z,s+t)
= Ce™"||oywl[s,
where € = pwy, — tr(a) > 0. It is easy to see that [Lyw|ns) < |w|(e,s) for all (z,s) €
G, so ||lgiyw|r < Ce ™||w||rr. This implies that the integral (3.8) converges in

LP(M, A*=1). Tt is also clear that ) vanishes on a neighbourhood of co. We have to
prove that it is smooth and d¥ = w.
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We know that there exists T' € R such that tyw ) = 0 for all s > T', then 9,
is an integral on a compact interval for every (x,s) € M. Since (z,s,t) — @jiyw is
smooth we can use Lemma 2.3.2 to see that o is in Q*~1(M) and

+oo
dd = —/ d(pfyw)dt
0
The Lie derivative of w with respect to the vertical field V is

*
PrW.
t=0

va =

d
dt
Observe that %gpjw = ¢fLyw. Then using the Cartan formula Lyw = diyw + tydw
(see for example [GHLI0, Chapter I,Section A]) and that w is closed, we obtain

t g ¢ ¢
OwW—w = / —prw ds = / oi(diyw + tydw)ds = / d(piyw)ds.
o ds 0 0

For every (z,r) € G we have

t
W(z,r) = lim (@:W(x,r)—/o d(gOZLVw)(I’T)dS).

t—-+o0

The limit exists because the expression in brackets is constant for ¢ big enough. Then
we conclude

—+o00
(,U(wn) = —/(; d((,piLVw)(m)ds = dﬁ(mm)

for all (x,t) € G, which finishes the proof. ]

Proposition 3.4.7. Fork=2,...,n—1 andp € (tr(a) tr(a)) we have LP H*(G, 0) #

w7 W1
0.

Proof. We want to construct a closed differential k-form w on G which represents a
non-zero class in LP-cohomology relative to co. Remember that we are working with
the complex (LPQY*(G,0),d). The strategy is inspired by the duality ideas mentioned
in Section 3.3, that is: we give a (n — k)-form § € Qﬁ;gik(G, 00), with % + % =1, such
that

(a) vg(w) = [owAB#0, and
(b) dLPOQ*YG, 00) C Ker vg;

which shows that w represents a non-zero element in L? H*(G, 00).

Consider two smooth functions g : (—oo,+00) — [0,1] and f : R"! — [0, 1] such
that:
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e supp(f) is compact, and
e g(t) =0forall t>1and ¢g(t) =1 for all t <O0.

We define wiy = d(f(x)g(t) doy A ... Adxp—q). Using triangular inequality we
have

lwll, < Ifg" dt Ndaxy A -+ ANdxg_q||r + Z
=k

0
a—jg dx; Ndxy A=+ ANdxg_y

J

Lr

Observe that the first term is finite because f¢’ is smooth and has compact support.
Then it is enough to show that for all j = k,...,n — 1 the form w; = %g dx; N\ dxi N
J
-~ ANdxp_q1isin LP:

of
a | 0x;

p
dV(x,t)
(z,t)

w;l7r = (x)g(t) doj Ndxy A - N dzg_y

lg(®)[” |da; A dxy A- -+ A dm_ﬂ}&@ ot gt o

/ et P(wr—1+A5)—tr(a)) g4
Lr J—

So ||lwjllr < +ooif p > —

+001fp>w(—k).

- for every j =k, . — 1, which implies that ||w| > <

Define 8 = dxy, A ... Ndx,_;. To prove that S is in Q;’O’Z%(G, 00) it is enough to
show that for every ball Br = Bgr(0,R) C R* ! and T € R the (n — k)-form S is
g-integrable on Z = B x (—o0,T). Using Lemma 3.4.4 we have

18114, , = / da A A dzy |2, dV (2,
7

T
</ / eqt(Ak+-~+>m_1)e—ttr(a)dmlt
- —00 BR

T
— Vol(Bx) / O+ Ano) (@) gy

—00

tr(a)

W1

tr(a)

S that is equivalent to p <

This last integral converges if, and only if, ¢ >

We now prove (a): Let Bgr, € R"! be a ball such that supp(f) C Bg,. For t < 1
consider Z; = Bpg, x [t,1]. Since |w A 8] is in L'(G) because of Holder’s inequality, we
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have

/w/\ﬁz lim d(fg dey A~ Ndxp_q)
e

t——o0 Z

= lim fgdxy N--- Ndx,

t——o00 BRl x {t}

= fd:):l/\/\da:n_l#O

Bp,

In the second equality we use Stokes theorem.

In order to prove (b) we take ¥ € LPQ*~1(G, 00). There exist two constant Ry, Tp >
0 such that the support of ¥ is contained in Bg, X (—o0,Ts]. By Stokes theorem

Vﬁ(dﬁ):/Gdﬁ/\/B: lim d9 A B = lim 9 A B.

t==oo BRQX[thQ] t=—oo BRQX{t}

In the second equality we use again that |[dJ A S| is in L*(G). Suppose that vg(dd) # 0,
then there exist € > 0 and ¢y such that for all ¢t < %,

/ IABl > e (3.9)
BR2 X{t}
Assume that
/19 - Z a’il ..... ikfld'r’il ARTIA dxikfl'
1<i1<...<ip_1<n
Therefore
/ DA ay,. g—1dxy A A dzy,—q (3.10)
BR2 X{t} BR2 X{t}

-----

dTp—1|(z,), then

19115, > /G la dzy Ao A dzga |, ydV (2, t)

Ts
= / / la dzy A ..o A da:k_llfx t)e_m(a)dxdt
—00 BR2 ’

to
= [ ([ lateppas ) et
oo Br,

t
- e/ i etPok—1=t(@) gt — 4 o0,

— 00

In the last line we use (3.9), (3.10) and Jensen’s inequality. Since 9 is in LPQ*1(G, o)
we conclude that (3.9) must be false and as a consequence vg(dd) = 0. O
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Finally, we prove the last part of Theorem 3.4.1 in the diagonal case:
Proposition 3.4.8. Ifp = %, then LP H*(G, o0) # 0.
Proof. We consider w and [ as in the proof of Proposition 3.4.7. The main difficulty

to apply the previous argument in this case is that 5 does not belong to ijg_k(G ,00),
then vg is not well-defined. An alternative is to consider the function

/ w A B
R —1x[t,+00)

which is well-defined because supp(w) N (R"™! x [t, +00)) is compact for every ¢ € R.

g LPQF(G, 00) — [0, +00], 73(w) = liminf

)
t——00

It is clear that

vg(w) = (x) dx # 0.
Rn—1
Furthermore we can show using the above argument that z(dd) = 0 for all ¥ €
LPQ*1(G, 00). This implies that w represents a non-zero class in LP-cohomology rela-
tive to oo. [l

3.4.2 Non-diagonalizable case

We rename the eigenvalues of o by py < --- < pg, with d € {1,...,n — 1}. Fix a
Jordan basis of R,

.. R L)
B:{eij.z-l,...,d,]—1,...,ri,€—1,...,mij},

where 7; is the dimension of the yi;-eigenspace spanned by {ej;, ..., e}, }, m;; is the size
of the j-Jordan subblock associated to j;, and a(ef;) = me%—i—ef;l forall ¢ =2,...,my;.
We can write
R*! = @Vij, where V;; = Span({efj l=1,...,m4}). (3.11)
]

Let us denote by % the unit positive vector which span the factor R of G and

by dt the 1-form associated to %. The 1-forms associated to the dual basis of B are
denoted by dxfj. We put on G the left-invariant Riemannian metric that makes the

basis BU {2} orthonormal in 7,G.

Observe that

té—l
ta 0 tu; l /—1 1
ere,; =e <eij+teij —|—...+(€_1)!eij>.

['his implies
L¥ . dxt. = et | dat e o dx
(z,0)dT;; = € xij—l—...—i— ) X .
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For every k =1,...,n — 1 we denote by A, the set of multi-indices
I:(’il,...,ik,jl,...,jk,gl,...,gk) (312)

with 7, = 1,...,d, jp =1,...,1r;, and ¢, = 1,...,m,;,;, for every h = 1,... k. We
assume also that the function h +— (ip, Jn, £1) is injective and preserves the lexicographic

order. For a multi-index as (3.12) we write
¢ 1
dxry dleljl VAN dxzk] , and wy = Wiy + - i -

Consider in A; the lexicographic order and ¢ : Ay — {1,...,n—1} the order-preserving
bijection. We denote dx;, = dxfj if h = ((i,4,0).

We have the following general version of Lemma 3.4.4:
Lemma 3.4.9. (i) For every I € Ay there exists a positive polynomial P; such that
|dl‘[|(x’t) = eth P[(t).

(i) The volume form on G is dV (x,t) = e @ dpy A+ Adx,_y A dt.

We say that a polynomial P is positive if P(t) > 0 for all t € R. Observe that the
class of positive polynomials is closed under the sum and the product.

Proof. (i) As in the diagonalizable case we consider the left-invariant inner product
(', M@y on A*(T(, »G) such that the basis {dz; : I € Ay} is orthonormal in
A(ToG). The induced norm is again denoted by [ ;4. Then

14 14
[dxilljj ARRRNA dle;:]k]Qac t) — [( xt)d$11j1) A ( a:t)dxzkjk)]
_ th(Mi1+.--+uzk dmh + + i - dxmi-ljl A
1171 e (mi1j1 _ gl)| 11J1

2

ki bk mi
o N S B —
( Uk (mik:jk — Op) ik o

From this expression it is easy to extract the polynomial P;. Then the equivalence
between [ | and | |, implies (2).

(ii) As in Lemma 3.4.4 it is enough to prove that dV (z,t)(vy,.. vn) = 1 for some
positive orthonormal basis {v1,...,v,} C Tz 4G. Since BU { -} is orthonormal
in TyG, the basis

Btu{%} :{dOL(x,t)(efj):izl,...,d;j:1,...,ri;l:1,...,mij}U{%}

tf—l
— tA; 4 L R Ny 0
_{e (eij+'-'+(€_1)!eij) .Z—l,...,d,j—1,...,7"i,f—1,...,mij}U{a}

is orthonormal in 7(, »G. Then we can check the equality evaluating dV'(z,t) in
the elements of B; U {%}.
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We need to estimate the contraction of the vertical flow ¢, in this case. To this end
we define another left-invariant norm on G: For every v € R™ we write

v = ZUU + a%, (3.13)
2
where the first sum corresponds to decomposition (3.11). Given a point (x,t) € G we

define
0@ = Y il + lal.
4]

Using that subspaces V;; are invariant by e'® we can easily see that the norm ( ), is
left-invariant and as a consequence equivalent to the Riemannian norm || ||(z. This
gives us the following lemma:

Lemma 3.4.10. Let w be a k-form on G, then

W] (1) =< sup{|wWes(V1, -, Uk)| (Vi) @y = 1 foralli =1,... k},

with constant independent of w and the point (z,t) € G.

A set of vectors in R"™! is said to be a-linearly independent (denoted also a-LI) if
it can be extended to a basis of the form U” Bi;, where B;; is a basis of Vj;.

Lemma 3.4.11. If w is a horizontal k-form, then the supremum in Lemma 3.4.10 is
reached on an a-LI set.

Observe that in the previous lemma, since w is horizontal, we can think of w, ) as
an alternating k-linear map on R™~!,

Proof. Since the closed ball for the norm ( ). is compact, the supremum is reached
on a set of vectors vy, ..., v, € R*! with (V) @y = Lforall ¢ =1,... k. We write
these vectors as in (3.13):

Vp = Z(’U@)Z]

Then

\w(xjt)(vl, Ce ,Uk)| =

Zw(x,t)((vl>ija U2,y ... 7Uk)
i,j

(v1)i5 )
W\ 77—~"—>V2,---, Uk || -
(0 (Il(vl)ijllw)

Since (V1) () = D2 ; [[(v1)ijll ) = 1, there exists a pair (i1, ji) such that

< )il
i

|w($,t)<vl, o) <

U1)ivg
Wiz, t) (H((# Vg, ... ,vk> ’ ) (3.14)

Ul)zm | (z,0) ’

%)



Observe that the vector u; = ”(vf;}ﬂ%
2131 (=,

it is in V/,;,. This implies that the inequality (3.14) is in fact an equality. Continuing in
this way we can construct an a-LI set {u,...,u;} that satisfies what we wanted. [

is unitary with respect to the norm ( ), and

Lemma 3.4.12. If v € V};, there exists a positive polynomial P;; such that for all
(z,s) € G and t > 0 we have

||U||(x,s+t) et Pij(t)HU”(a:,S)'

Proof. Observe that for every s € R we have

[Vl @y = le™*v]lo = €= le=*v]lo,
where J is the (m;; x m;;)-matrix
0 1
J = J(my) =
1
0
Then
[oll sy = e () o < eI ey = e e ol

Here |e~'’| denotes the operator norm of the matrix e~*/. Since all norms on R™i are
Lipschitz equivalent, there exists a constant C;; > 0, depending only on m;;, such that

|6_tJ| S Cz‘j Z a[,r(t)Qa

1<l,r<mg;

where ay,. are the entries of e™*/. Notice that they are polynomials in ¢, in particular

age =1 for every £ =1,...,m;;, then the Lemma follows taking
Py(t)=C3 > ag(t)
1<l,r<mg;

Now we are ready to prove the general version of Lemma 3.4.5.

Lemma 3.4.13. If w is a horizontal k-form on G, then there exists a positive polyno-
mial ) such that

|90:w|(x,5) < et V Q(t)|w|(x,s+t) vVt > 0.
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Proof. Using Lemmas 3.4.10 and 3.4.11 we have
gofw(w)(| i e Uk )’:{vl,...,vk}isa—LI}

|Ul||(oc75) “UkH(I,S)
H Vel (@,s+0)
|U€|| (z,s)

U1 Vg :
Wirstt - {v1,..., v} is a — LI
) <||Ul||(x,s+t) ||Uk||(x s+t))‘ }
Suppose that v, € V;

i, for every £ =1,... k, then by Lemma 3.4.12 and the fact that
we are considering a-LI sets we obtain

lorwl@r 2 e Q) |w](@,s1),

where @ = [];; Py O

|S0:W’(:c,t) = max{

Using Lemmas 3.4.9 and 3.4.13 we can easily adapt Proposition 3.4.6 to the general
case. The generalization of Proposition 3.4.7 is a bit more complicated.

Proof of Proposition 3.4.7 in the general case. We consider again the closed forms
Wiy = d(f(x)g(t) dey A+~ Ndwg—q) and 8 = dag A~ ANdxy_q.

By Lemma 3.4.9 there exists a positive polynomial P such that

2
lwllfs = 11fg dt Aday A~ Adaya |15, + / =) P(t) 5 dt.
Then w € LPQF(G, 00) for all p > * ) . In a similar way as in the diagonal case we can

show that § is in Q7" "G, ) if ¢ > Akthr(—f:/)\n which is equivalent to p < tr(a) It is
also clear that vg(w) # 0.

Let us take ¢ € L2 Q" 1(@) and prove that vg(d) = 0. Here we find a problem
to reproduce the previous argument: It is not clear that |4 > |ards|(,), where
Y =Y ardxy, because the Jordan basis is not orthogonal in all tangent spaces. A way
to solve it is to consider the forms

('&I)(m,t) = (L(_;’t))*dl’]
IfI = (il, Ce ,Z'kfl,jl, e ,jkfl,él, Ce ,gkfl) we have

lk—1Jk—1

(01) @) = (L) (dayy Ao A=) ) = ( )

1171 Tk—1Jk—1

()"
__ ,—twr — f—i—h
—e (Z e J>

h=0

where M, = m;_;, — {s. We define (vr)(z) = et“”(f)f)(m) and write



Observe that |vf| (e < e for every (z,t) € G.

Since {vy : I € Ap_1} is orthogonal at every point with respect to (( , ))(z), then
[ (z,ey > [arvr] e for all I € Ap_; and therefore |04 = |arvr|e-

We can easily observe that
VAL =apde; N ANdx,_q,

where Iy is such that dxy, = dxy A ... A dxg_y. Suppose that vg(dd) # 0, then if
supp(¥) C Br x (=00, T] with Bg = B(0, R) C R"!, there exist ¢ > 0 and ¢, such

that for all ¢ < tg,
/ ar,(x,t)dz| > e.
Brx{t}

Now we have

[, = / aryonl, oV ()

to
= / (/ lar, (as,t)|pdm) ot 1—tr(a)) gy
oo \UBg

t
- Gp/ ’ et(pwkflftr(a))dt = 4+00

—0o0

This contradiction proves that vz(dy) = 0. O

Using 73 as in Proposition 3.4.8 and the above argument it is easy to prove that
LPH*(G,€) # 0 for p =

case.

trk(f) which finishes the proof of Theorem 3.4.1 in the general

w 17
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Chapter 4

Relative Orlicz cohomology

The aim of this chapter is to prove Theorem 1.2.8. Before that we prove the quasi-
isometry invariance of the simplicial version of relative Orlicz cohomology.

4.1 Simplicial relative Orlicz cohomology and quasi-
isometry invariance

Let X be a finite-dimensional simplicial complex with bounded geometry and ¢ a
Young function. As in the LP-case we have the following proposition:

Proposition 4.1.1. The usual coboundary operator § = 0y, : £°C*(X) — (*C*1(X)
s continuous.

Proof. Let 6 be a cochain in £°C*(X), then

166]|zs = inf ¢ v >0 : Z ¢<M—@)§1

0€X k41 P)/
=inf¢{~vy>0: Z ¢<0(80))§1
ceX, v
k41

The bounded geometry implies that there is a constant N (1) such that every k-simplex
7 in X is on the boundary of at most N (1) k-simplices. Then

5 (1) < 350 (%),

O’EX}C+1 TGXk

which implies

1661+ < inf{v >0: 3 v (17 < 1} = 6l vene.

TEX)
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The proof ends using the equivalence between || || ~vas and || |[z¢ (Remark 2.5.1). O

The quasi-isometry invariance of the simplicial relative Orlicz cohomology is proved
in a similar way as the LP-case. The only difference is the continuity of the pull-back
and the homotopy defined in the proof of Theorem 1.2.1.

Proof of Theorem 1.2.8. Consider the family of maps cp : Cyx(X) — Cy(Y) given in
Lemma 3.1.2. We consider the pull-back of a k-cochain 6 € (*C*(Y, F(£)) as

F*0 =0 ocp.

It is clear that 0 o F' = F' o and that F™*6 vanishes on a neighborhood of £. Let us
prove that F* is well-defined and continuous from (¢C*(Y, F(£)) to (*C*(X, €):

| F*0|| e = inf {7 >0: Z o) (F*i(a)) < 1}

oceXk

<infay>0: ) ¢ N Yol <1

oeXFk T€lcr(0)]
: ‘ 1 NyLy,
<inf<y>0: Z Z K(CF(U))qb( 5 ‘9(7)|> <1,
oceXk 7€|cr(0)]

where N, and L;, are constants such that for all o € X,
ler(0)]|oo < Ng and £(cp(0)) < L.

As in the proof of Theorem 1.2.1 there exists a constant C such that for every 7 € Y*,
then 7 € |cp(0)| for at most C simplices o € X*. Then

N L
|F*6)],0 < inf {7 200y c¢( : ’“ww) < 1} = NeLil6lee < 16]1e

o€Yk i
Therefore F*0 € K?C’“ (X) and F™ is continuous.

If G: X — Y is another quasi-isometry at bounded uniform distance of F'; Lemma
3.1.3 gives us an homotopy h between cr and cg, then we consider

H : (°CH(Y, F(€)) — 1°C*1(X, €), HO(0) = O(h(0)).

The continuity of H can be proved in a similar way as we have proved that F™ is
continuous. It is clear that if § € £2C*(Y, F(£)), then H6 vanishes on a neighborhood
of £ because the Hausdorff distance between cg(c) and h(o) is uniformly bounded.

Observe that H is an homotopy between F' and G, then they induce the same
map in relative ¢?-cohomology. As in the proof of Theorem 1.2.1 this implies that if
F:Y — X is a quasi-inverse of F, then F*oF and F o F* are the identity in relative
¢?-cohomology, which finishes the proof. O
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4.2 Equivalence between the two versions in the
case of Lie groups

Consider now a Lie group G equipped with a left-invariant Riemannian metric. Given
x € G we denote by L, and R, the left and right translation by x respectively, and by
dz the Riemannian volume on GG. The unity of G will be always denoted by e. Observe
that such a manifold has always bounded geometry.

The aim of this section is to prove Theorem 1.2.9. We assume here that the Young
function ¢ is doubling.
4.2.1 Convolution of locally integrable forms
Let k : G — [0, 1] be a kernel on G, which means:

o ke (C™(G),

e supp(k) is a compact neighborhood of e € G, and

o [ k(x)dr =1.

If w is a locally integrable k-form on GG we consider its convolution with x as the
k-form

(W*K)y = /G(R:w)xn(z)dz.

Lemma 4.2.1. There exists a constant C' > 0 such that for every locally integrable
k-form w on G and x € G we have
lw * K|, < Clw| * k(x),

where |w| * K is the convolution of the function x — |w|, with the kernel k.

Proof. Let vq,...,v; be vectors in T, G, then

|(w * &)g(v1,. .., v8)] =

/G(sz)x(vl, o up)R(2)dz
< /G |(Riw)e(v1, ..., vg)|k(2)dz
_ /G e (Ao R (01), - ., du R (04))|(2)dz.

Since R, o L, = L, o R, we have |d.(R, o L,)| = |d.(L, o R,)| (here | | is the usual
operator norm) and therefore |d,R, o d.L,| = |d,L, o d.R,|. Using that L, is an
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isometry we obtain |d,R,| = |d.R.|. The function z — |d.R,| is continuous, then it
has a maximum M in supp(k). If ||vi|| = ... = ||vk]| = 1,

|wxz(deZ(vl>7 o 7d:L“RZ(Uk))‘ < Mk‘w‘%z’

which implies |w * k|, < Clw| * r(z) with C = M*. O

A consequence of Lemma 4.2.1 is that the convolution of a locally integrable form
is also locally integrable.

Proposition 4.2.2. Let w be a locally integrable k-form on G, then:

(i) If w has weak derivative dw, then the convolution w % Kk has weak derivative and

d(w* k) = dw * K.
(i) The convolution w * k is a differential form.

Proof. (i) For every z we have d(Riw) = Ridw in a weak sense. To see this take
B € Q" *1(G) with compact support, then

/(dew)/\ﬁz/R:,(dw/\Rzlﬂ)
G G
:/dw/\Rzﬁ
G
— _1 k+1 dR*_1
(-1) /GwA :
= (=) | (R* dgs.
(1) /G< “w) A dB

Therefore the weak derivative with respect to x € G of the k-form ®(z,z) =
(Ridw).k(z) is
d®(x, z) = (Ridw).k(z).

Since z +— d®(z,z) has compact support for all x € G, by Lemma 2.3.1 we
conclude that

(dw k) = / (Ridw)k(z)dz
G
is the weak derivative of the convolution w * k.

(ii) Suppose first that w = f is a 0-form, which is equivalent to say that it is a locally
integrable function on . Consider Y a vector field on G with flow ¢;. First
observe that

[ n(e) = /G F(22)r(2)dz = /G F(w)s("y)dy.
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Then

0

Ly (f x r)(z) = = .

51| fwmtat)

(f * r(ee(2)))

Since ¢ is smooth and x is smooth with compact support, the classical Leibniz
integral Rule implies that this derivative exists and

dy.
x(f *r)(x /f 7, K(pe(z)"y)dy
Using this arguments we can prove by induction that Ly, ... Ly, (f*k)(z) exists
for all z € GG for every family of vector fields Y7, ..., Y,,. ThlS implies that f x k

is smooth.

Now consider {ey,...,e,} abasis of T.G and Xj, ..., X, the right-invariant fields
verifying X;(e) = e;. Let ¢! be the flow associated to X; for every i = 1,...,n
If wis a k-form with k& > 1 we set

Jiroin (@) = (W K)o (X (), -, Xy ().

To prove that w * k is smooth it is enough to prove that all these functions are
smooth. Observe that if

Gix,..., Zk(x) = w(x)(Xil ($), SR >Xik(x))7

then f;, . = .., * . This reduce the general case to the case k = 0 and
finish the proof.

]

4.2.2 Proof of Theorem 1.2.9

Let U be an open covering in G. We consider the following cochain complexes:

o L2QF(G,U) is the space of all differential forms w € QF(G) such that w|y and dw|y
are in LeQF(U) for all U € U, and the functions U — ||w|y||ze and U +— ||dw|y|| e
are in (?(U). The norm of w € L?Q*(G,U) is defined by

(wlzo = 10lles + 116l es

where 0(U) = ||w|v]|ze and §'(U) = ||dw|v]|re. Naturally, the map defining the
chain complex is the usual derivative.

o I°OF(G,U) = LPQF(G) N LPQ%(G,U) with the norm | |76 = | |6 + ] |26
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e If G is Gromov-hyperbolic and ¢ is a point in G, we consider L*QF(G,U, €) the
subcomplex consisting of all forms w € L?QF(G,U) that vanish on a neighborhood
of €. In this case we also define Z?QF(G,U, &) = LYQF(G, &) N LPQK G, U, €).

We consider in this section a uniformly locally finite open covering U such that
all intersections are bi-Lipschitz diffemorphic to the unit ball in the corresponding
Euclidean space, and X the nerve of /. Remember that a Lie group equipped with a
left-invariant metric is always complete and has bounded geometry; also notice that if
it is contractible, then it is uniformly contractible. If G is Gromov-hyperbolic and £ is
a point in G, then we denote by £ the point in 0X corresponding to & by a canonical
quasi-isometry.

First of all we see that, unlike the LP-case, L?Q*(G,U) can be different from
LPQK@).
Example 4.2.3. We take the doubling Young function ¢ : R — [0, +00),
£}

(1) = Gpell) = o e

with p > 1 and x > 0. We want to construct a 1-form w in £2Q*(R,U) and out of
L?QYR), where U = {U,, = (n—e,n+1+¢€) : n € Z} with € > 0 much smaller than 1.

Let {a,}nez be a sequence of positive numbers such that:
e > aP = 400, and
e > od(a,) < +oo.

Take for every n € Z an interval A, in R such that A, C (n 4 2¢,n + 1 — 2¢) and
long(A,) = af. We can suppose that a, is small enough for every n € Z. Consider the
function f : R — R defined by

f=2_La.

nez
[ L) [ [ N S R
2 A, [IR) R ol A, Lp A B
| |
Uy
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On the one hand

/Rﬂﬁ(f(t))dt - Z/n d(1 g, (t))dt = Za£¢<1) — oo

nez neZ

But on the other hand

o (5= ete () = s = (5)

which implies || f|y, ||zs < a,, and then

ST o6 flvallze) < o(an) < +oo.

ne” neL

We can find a smooth function g close enough from f such that g — f € L?(R)
and ||(g — f)lv,|lze € €9(Z) and consider the 1-form w = g dt. Since |w|; = |g(t)| and
dw = 0 we can see that w € L2Q'(R,U) and w ¢ L?Q'(R).

In this case the other inclusion is true. One can prove that LYQF(R) C L2QF(R,U)
for k£ = 0,1 using the inequality ¢(s)p(t) < 2"¢(st). In fact this inclusion can be
proved for every Riemannian manifold with bounded geometry and every doubling
Young function satisfying an inequality ¢(t)¢(s) < Co(st) for all s,t € R and some
constant C.

Using Lemma 2.5.4 we can easily deduce the following lemma:

Lemma 4.2.4. Consider a sequence {wyfneny C LPQF(G,U) and denote for every
Uelu,
0,(U) = llwnlullzs and 0,(U) = ||dw,vl|e-

Then w, — 0 in L2QF(G,U) if, and only if,
> 6(0u(U)) = 0 and Y ¢(6,(U)) = 0. (4.1)

veu veu

Lemma 4.2.5. The space QF(Q) of differential k-forms with compact support is dense
in LOQF(G,U).

Proof. Take w € L2QF(G,U) and denote 0(U) = ||w|y|zs and §'(U) = ||dw|r||e. Since

¢ is doubling we have

> 6(6(U)), Y o(0'(U)) < +oo.

Ueu veu
Given n € N we take a compact subset K,, C G such that

S o), S e ) < %

UZKn UZKn
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Let A, be an open set in G such that K,, C A, and A, is compact, and h, : G — [0, 1]
a smooth function with support in A, such that h,|x, = 1 and |dh,|, < 1 for all
xeQqG.

Now we define w,, = h,,w and
0,(U) = |(w — wa)lu e and 6, (U) = [|d(w — wp)lv]| Lo

We will use Lemma 4.2.4 to prove that w, — w in L*QF(G,U).

On the one hand we have 6,,(U) = 0 if U C K, and |0,(U)| < |0(U)| otherwise.
Then
D 6(0u(U) < Y $(6(U)) — 0, when n — +oo.
veu U¢Kn
On the other hand, ¢/, (U) = 0if U C K,, and 0,(U) < ||dh, Aw|| s + ||(1 = hy,)dw]| 16
otherwise. It is easy to see that |dh, A wl|, < |dhy|.|w|. < |w|z, then

> 00,0) < Y dlllwlulize + lldwlo o)

Ueu UZK,
<y ¢2llwlullLe) + o 2lldwu||ze)
2
UZK,
<2 ( IRIUCHESD'S ¢<9'<U>>> =0
g 2 9
UZK, UZK,
when n — +o00. Here D is the doubling constant of ¢. O

The following proposition will be proved in a similar way as Theorem 1.2.3. Some
lemmas will be necessary for this purpose.

Proposition 4.2.6. The cochain complezes ((°C*(Xg), ) and (L*Q*(G,U), d) are ho-
motopically equivalent. So are the cochain complexes ((°C*(X g, €),0) and (L9 (G, U, €), d).

We need an L®-version of Lemma 3.2.1:

Lemma 4.2.7. The cochain complex (L*Q*(B),d), where B is the unit ball in R",
retracts to the complex (R -0 —0— ...).

Proof. As in the LP-version, for # € B and w € L?Q*(B) we consider the map

1
Xz (W) = / n; (LW?ZM) dt,
0 ot

where 1, : B — [0,1] x B, is defined by n,(y) = (¢,y), and ¢, : [0,1] X B, ¢.(t,y) =
ty + (1 —t)z. If wis a k-form in L?QF(B) with k > 1, we put



and

01 g 1

if fis a function in L?Q%(B). As in Lemma 3.2.1, we have hod + doh = Id. We have
to prove that h is L?-continuous in all degrees. To this end remember that if w is a
k-form with & > 1, then

hw)l, < C / 12— ymu(z)dz,
B(y,2)

where u(z) = |w|, if z € B and u(z) = 0if 2 ¢ B, and C is a constant. Using this
estimate we have

Il =it {5 >0 [ o (M) ay <1}
< inf{fy >0: /B¢ (/B(M) \z—y\”@dz) dy < 1}.

Since fB(y %) |z — y|'7"dz < +00, we can use Jensen’s inequality and write

|h(w)]| e < inf {7 > 0: Vol(B(0,3)) /B /B(QS) ¢ (VOW;‘((E)’ 3))7) : _d;n_ldy < 1}

We have that there exists a constant /' > 0 such that [ P |n —4 - < K forall z € B(0,3),
then

[Pl ze < VOI(B(0, 2))[|w|[ o = [lw]lre,
where K = K Vol(B(0, 3)).
As in Lemma 3.2.1, the identity dh(w) = w — h(dw) and the above estimates give

us the continuity of h for the norm | |;4 in all degrees. O

In a similar way as in Lemma 3.2.2, we have:

Lemma 4.2.8. Let M and N be two Riemannian manifolds and f : M — N a
bi-Lipschitz diffeomorphism with constant L. Then for all k € N the pull-back f*
LPQF(N) — LPQF(M) is continuous and its operator norm is bounded depending on

L, k, ¢ and n = dim(M).

Proof of Proposition 4.2.6. Let us define the bicomplex

= {“ e [ 222U : {llwollze Yvew, {lldwoll e Yrew, € € (Ue)}

Uely
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equipped with the norm
lwll = 1101les + [16"][es,

where O(U) = ||wu||ze and 0 (U) = ||dwyl|re. The derivatives are defined as in the
proof of Theorem 1.2.3, by

o (dw)y = (—1)%dwy for all w € C**,
e IfweCH and W e U1, W=UpN...NUps, then

I+1

(dﬁw)w = Z(_l)l (onﬂ...Ui,1ﬁUi+1ﬁ...ﬁUg+1 ) |W
=0

It is easy to see that d’ and d” are well-defined and continuous, and that d’od”4+d"od' =
0.

Observe that, as in the LP-case, Ker d'|co.¢ is isomorphic to £°C*(X) and d” corre-
sponds with the coboundary operator . On the other hand, it is clear that Ker d”|cxo0 =
LG, U).

Claim 1: The cochain complex (C** d') retracts to (Kerd'|coe — 0 — ...) for all
¢ e N.

For every U € U, consider fy : U — B an L-bi-Lipschitz diffeomorphism (L does

not depend on U and B is the unit ball in the corresponding Euclidean space). We
define H : C** — C*1¢ by

(Hw)y = (=1 fih(f5") wo,

where h : L?QF(B) — LQ* 1(B) is the map given by Lemma 4.2.7. Here we are using
the identification C 1 = Ker d’|¢o.c. One can easily verify that Hd' +d'H = Id. Using
Lemma 4.2.8 we have that H is continuous.

Claim 2: The cochain complex (C** d") retracts to (Ker d”|cxo — 0 — ...) for all
ke N.

We define P : C** — C*!~1 in the same way as in the LP-case. It is easy to prove
that P is continuous and Pd” + d"P = Id. Here C*~1 = Ker d”|cx..

Using Lemma 2.2.1 we obtain the equivalence between £?QF(M) and £¢C*(X).

To prove the relative case we have to consider the bicomplex (C¢™,d',d"), where

C’g * is the subspace consisting of the elements w of C** for which there exists V C G
a neighborhood of ¢ such that wy = 0 if U C V. The above argument works in this
case because all maps preserve the subspaces Cg £, O

Proposition 4.2.9. The cochain complezes (L*Q*(G,U),d) and (Z°Q*(G,U),d) are
homotopically equivalent. So are the cochain complexes (L*Q* (G, U, €),d) and (Z°Q* (G, U, ), d).
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Combining Propositions 4.2.6 and 4.2.9 we have the following diagram:

(400 (Xg) — 10 (X ) —— 1902 (Xg) 2 - -

|| (] ]

LO0(G,U) —= LN (G, U) —= L2 (G, U) -

|| (] ]

909G, U) —= T°QN (G, U) —4= T902 (G, U) — - .-

Proof. Consider the family of maps *x : LPQF(G,U) — Z°QF(G,U) given by the
convolution with a smooth kernel &.

Claim 1: For a fixed k = 0,...,dim(G) the map *x : L2OQ*(G,U) — LPOF(G,U) is
well-defined and continuous.

Let v > 0 and U € U, using Lemma 4.2.1 we have

[ (5 o[ )
ol o)

(5 )

U'eNy
where Ny = {U’' e U : U'N(x-supp(k)) # 0 for some x € U}. The bounded geometry
implies that there exists N a uniform bound of #Ny. Using this bound and Jensen’s
inequality we have
.)

/ s (|w * /<¢|x> i < Vol(U) Z 4 (HNC’w|U,
U v #No i g
Let V' a uniform bound for Vol(U). Because of Lemma 2.5.2, there exists a constant
D such that if 8 is in L?Q*(U) with U € U, then ||B]|z: < D||B]|+. Therefore

|w*/<¢|m)d \%4 (HDNCW|U/ )
/U¢( ot xg#NUZ¢ Y o)

U’GNU
If v > DNC|w|y|| e for all U € Ny then
/@(&ﬁﬁ)mgy
U g
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By Remark 2.5.1 there exists a constant C(V') such that

lw* KlullLe <C(V)[lw*rull o <C(V)DNC > llwlorlle-
U'eNy

Denote L = C(V)DNC' and take v > 0,

> ¢ ( rwm\Uum) <30 (% 3 Hwb,‘,m)

Ueld Ueu U'eNy
NL
= Z >0 —||W\U'HL¢> :
Ueld # U’eN ( v

Let R > 0 be such that for all U’ € U, U’ € Ny for at most R open sets U € U. Then
W * K b
oo (lertleles) < 5 ro (Toetole ).
Ueu veu

This means that, if 0(U) = |lw|y||z¢ and 9(U) = ||w * ||| s, then
[9llee < NLJ|O]¢re < [6]]¢o-

Using the same argument with d(wx k) = dw*k we can conclude that |w*k|zs < |w|zs,
which finishes the proof of Claim 1.

Claim 2: Let k = 0,...,dim(G). The map *x : L*QF(G,U) — L*QF(G) is well-
defined and continuous.
) dx
Ll

As above, if v > 0 we have

/¢<—'w*“'w>dws/¢( H“’U’
G v U'e/\/

a Ueu U'eNy v LPhi
L
<> VR¢ (‘ wlu ) .
Ueu Lo

Using again the notation 0(U) = ||w|v|| ¢, we have ||w|ze < L||0]|vrs < [|0]]4¢. Doing
the same with the derivative we conclude the Claim 2.

Claims 1 and 2 imply that * : L2QF(G,U) — Z?Q%(G) is well-defined and continu-
ous. Furthermore, by Proposition 4.2.2 we know that xx commutes with the derivative.

We will define a family of continuous maps h : L*QF(G,U) — LPQ*1(G,U) such

h
vt h(df) = f —i(f x k) if feLrQG,U) 49
h(dw) + dh(w) = w —i(w* k) if we LOO¥(G,U), k > 1. (42)
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If h maps continuously Z?QF(G,U) on Z9QF1(G,U) for every k > 1 we also have

{ h(df) = f —
h(dw) + dh(w)

(if) * if f€Z?Q%G,U)
w— (1 )*Ii if w e Z?0K(G,U), k > 1.

This implies that (£°Q*(G,U),d) and (Z?°Q*(G,U),d) are homotopically equivalent.
Notice that the inclusion i : Z9QF (G, U) — LPQF(G,U) is clearly continuous.

LOO(GU) — LOONG,U) —~ LOO (G, U) —

790°(G,U) —4= 90N G, U) —> T02(G, U) —

For every z € supp(k) we consider Z € Lie(G) a left-invariant vector field such that
exp(Z) = z. Let o7 be the flow associated to Z. Observe that

i (x) = Lopf (€) = x - exp(tZ).

Given w € LPQF(G,U) with k = 1,...,dim(G), we define

pre == [ ([ eyt st

This is a differential k-form because of Lemma 2.3.2, which also gives us an expression
for its derivative.
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Claim 3: h and *k verify 4.2.
Take w a k-form in L*QF(G,U), then

h(dw) + dh(w) = —/G (/Ol(cptz)*bzdw dt) k(z)dz — d/G (/Ol(wf)*bzw dt) r(z)dz
= [ ([rasan a) s

Recall the Cartan formula Lzw = tzdw + dizw and the identity %(aptz)*w =
(¢?)*Lzw. Then

h(dw) + dh(w) = /(/1< 2y L,y dt) n(2)d
—— [ ([ Zetreat) st
_ /G o —

Now consider f € L2Q%G,U), then

h(df), = — /G ( /0 1 dfm.exp(tz)(Z(x))dt) h(2)dz.

Let a: [0,1] = G the curve a(t) = z - exp(tZ). We have o/(t) = Z(«a(t)), then
(f o a)(t) = dag f(0'(t) = dfaexprz)(Z(a(t))).

h(df), = — /G ( /0 (o a)’(t)dt) w(2)d

- /G ((a(1)) — F(a(0))(z)dz

_ /G (f(22) — f(x))(2)dz
— f(x) - f *R(a).

Claim 4: h: L°QF(G,U) — LPOF (G, U) is well-defined and continuous for every
k=1,...dim(Q).

w)k(2)dz = w — w * K.

Therefore

First we estimate the operator norm of hw at a point x € GG. Consider vy, ...,v5_1 €
T,G, then
latoncoel=| [ ( ( (ZE ) g (00). - g (1na))dt ) ()

< / ( / |w%z<m><z<sof<x>>,deexpm(vl),...,dzRexp<tz><vk_1>>|dt) o(z)dz
0
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As in the proof of Lemma 4.2.1 we have a uniform bound |d,Rexpiz)| < M for all
z € supp(k). Moreover, since left-invariant fields have constant norm we can write
1Z(y)||, = C for every y € G. Then if ||v1]|, = ... = ||Jvk—1]l. = 1,

1
|h(w) (v, .y vp—1)| < /G (/0 CMk_l\w\%z(x)dt) k(z)dz,

e < [ ([ oar el gt el (43)

Using (4.3) and Jensen’s inequality we obtain

¢(@) < /G (/Oldo (C%k_l !w!%z(x)) dt) K(2)dz. (4.4)
For U € U denote 0(U) = |[w|y| e and 9(U) = |||y e Tf 7 > 0 we have
/ (|h )d <// (/ ( . 1’W’¢f(x)dt>)/€(z)dzdx
/(// ( Mk 1!w!¢g(x)> dxdt) K(2)dz.

The identity d,p? = dy Rexp(iz) allows us to find m > 0 such that m < |J ac,(p?)| for
all z € supp(x). Then

(o (], o)
L ()

where E(U) is a neighborhood of U with uniform radius (independent of U) such that
of(x) € E(U) for all z € supp(k) and = € U. Consider

which implies

={VeUu:VNnEWU)#D},

then if v > CM*! max{||w|v[|, s, : V € Vu}, where S > #Vy for all U € U,

/Ud)(lh(:)lx) i <1,

h@)lolle < CM* max{wlvll g, :V €V} <M Y Jlwlvlre

Vevy

which implies
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for some constant M that does not depend on U. Therefore

Z¢<Hh \Uum) Z¢<Mzr|w\vum>

Ueu = VEVU
Z Z (5M||w|v||m)
Ued Vevy # v v
< ZNfb (5M||W|v||m> |
Ueut v

where N > #{U e U : V € Vy} for all V € Y. From here we obtain

[9lles < SM|O]lers = (1]l ee-
Using the identity dh(w) = w — i(w * k) and the above estimate we obtain
[(w)lge =2 |wlze-

Claim 5: The map h : L?Q*(G) — L?Q*1(G) is well-defined and continuous for

every k= 1,...,dim(G).
/ (/ ( car ;\éw\% ””) dt) w(2)dzdz
(]
s

Using 4.4 we have

fo ()

| /\

IN

(CMk 1|w|y> dydt) K(2)dz

( M’“ 1|c0|y>

|lwl||re; and using again the equality (4.2) we have

J
.0
J

From this we obtain ||h(w)]| e
|h(w)]Le = |w|Ls-

By Claims 4 and 5 we conclude that h is well-defined and continuous from Z?QF (G, U)
to Z°QF (G, U).

The same argument works in the relative case, the only thing we have to verify is
that the maps *x and h preserve the relative subcomplexes. This is easy using the
compactness of supp(k). ]

The proof of Theorem 1.2.9 finishes with the following proposition.
Proposition 4.2.10. The cochain complexes (Z°Q*(G,U),d), (L*Q*(G),d), and (L*C*(G), d)

are homotopically equivalent. The same result is true for the corresponding relative
cochain complexes.
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Proof. In this case we consider xx and h defined as in Proposition 4.2.9. We have to
prove that they are well-defined and continuous. Identities as (4.2) are clearly satisfied.

h h
LoC(G) LeCY(G) LoC2(G) L
TP (G, U) —L= T90N (G, U) —L= T (G, U)
LmO(G Lml(G Lm?(G

The map h : L°C*(G) — L?C*1(Q) is the continuous extension of h : LC*(G) —
L?C* (@), then we have that all maps h in the diagram are continuous.

Claim: The map *x : L°C*(G) — I?QF(G,U) is well-defined and continuous for
every k= 0,...,dim(G). Then so is *k : L*Q*(G) — Z°Q*(G,U)

First of all observe that if w € L?C*(G) then w * k € Q¥(G) by Lemma 4.2.1.
Remember the estimate given by Lemma 4.2.1:

lw * k| < Clw| * k().

For v > 0 we have

(e o)
:/G¢</G %H(z)da dz
g/G/ng(C’:”“) k(2)dzda.

In the last line we use Jensen’s inequality. As before we take m > 0 with m <
|Jac,(R.)| for all x € G and z € supp(k), then

oo ({22 Bt
([ 3e(
()

/¢(|w*ﬁ|x>dx§ 3
G Y

5

If v > C||w||L£ we have




which implies ||w* k|[1s < C’||w||L£ =< ||w|lzs. In the same way we have ||d(w* k)| =

|dw * K| s = ||dw]| e and as a conclusion |w * K|re < |w|pe.

On the other hand we denote 9(U) = ||w * |||+ and estimate

X (|w 7|> ws o (/ Clﬂm“”dz) o
C”“ﬂy )
D —=d
< <b(/E(U) M)

where E(U) is a neighborhood of U with radius independent of U, and D is a constant
(also independent of U). We can deduce from here that

o wlules < s [ ey
o < .
viE ¢~(1/D) E(U) Y
In order to simplify the notation we write C = %. Then
WK C
oot} o570 (€[ )
Ueu v Ueu T JEW)
1 CVol(E(U))|w
oy [ o(CYAEDLY
UEuV()l(E(U)) E(U) Y

Using that {E(U) : U € U} is a uniformly locally finite covering such that Vol(E(U))
is bounded from above and below far from zero, we can find a uniform constant L such

that
ZW/}E(U)¢(CV01(EV(U))|W|3/) dyS/GL(b <%> "

veu

This proves that ||9||s < ||w]|ze. Doing the same for the derivative we obtain |w*k|6 =
|w| e, that finish de proof of the Claim.

As in Proposition 4.2.9 the relative case follows from the previous argument. [
Observe that the previous proposition has a consequence that is not trivial: to
study the (relative) L?-cohomology in the case of Lie groups it is enough to consider

differential forms. This result is proved in a more general case in [KP15] for the non-
relative version.

76



Chapter 5

Some questions

5.1 Dependence on the boundary point

Example 3.1.4 shows a uniformly contractible and Gromov-hyperbolic simplicial com-
plex X with bounded geometry for which ¢# H'(X, &) is not isomorphic to (?H'(X, ),
where &, and £ are two different points in 0.X.

This kind of result allows to conclude that there is no quasi-isometry from the space
to itself whose boundary map sends & on &. In the case studied the topology of the
boundary gives a more direct proof of this fact, but it is not always so easy.

In the case of a Heintze group G = N %, R, whose boundary is 0G = N U {0}, we
have that LPH*(G,€) is isomorphic to LP H*(G,n) for every k € N if £, n € N C G
because QI(G) acts transitively on N by boundary maps. It makes sense to ask the
following question:

Question 5.1.1. Is LPH*(G, €) isomorphic to LPH*(G,00) if £ # 0o ?

A negative answer to this question for some k and p would imply that oo is fixed by
the group QI(G). Observe that the question can be formulated also for relative Orlicz
cohomology.

It is known that the boundary point oo is fixed by QI(G) if G is not of Carnot
type (see [Carl6]) and it is easy to see that QI(G) acts transitively on 0G if G is a
symmetric space. The non-symmetric Carnot type case reminds open.

5.2 Relative Orlicz cohomology of Heintze groups

Consider the family of doubling Young functions
_ £”
- log(e + [t]71)~

Pp.(t)
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with p > 1 and k € R. We can call p the main exponent and « the logarithmic exponent
of the Young function.

Example 5.2.1. Consider G = R" ! x, R a purely real Heintze group with o diag-
onalizable and denote by A\; < --- < \,_; the eigenvalues of . The numbers w,, are
defined as in Section 3.4.

Using similar methods as we use in Section 3.4 we can prove that:

(i) Le~H*(G,0) =0 for p > tr(o‘i and all k; and

W

.. bp.r k M tr(a)
(ii)) L»=H"(G,00) # 0 for p € ( oL ,_’wkfl] and all &.
As one can observe in the previous example, the logarithmic exponent of the func-
tion ¢, . seems to be negligible. Looking at the computations it seems to be related to
the fact that o has not Jordan blocks (with size bigger than one).

We would like to get numerical quasi-isometry invariants related to the sizes of the
Jordan blocks of the derivation « defining a purely real Heintze group G = R"! x, R
(or more in general G = N x, R). We think that critical logarithmic exponents could
give us such invariants. Here the notion of critical logarithmic exponent is a bit vague,
we can think of it as an exponent k. such that there exist fixed p > 1 and k € N, and
a property satisfied by L= H*(G, o) for k in an interval of the form (g, k), but not
satisfied by the cohomology space for x in an interval (k., £1). In the case of Example
5.2.1 we can say that % is a critical main exponent for the property of being zero as
vector space, but there is not critical logarithmic exponent for the same property.

Being more ambitious, we could try to answer Question 1.2.11 using these methods.
To justify that this question makes sense and that it is related to Conjecture 1.2.6 we
can look at the following proposition:

Proposition 5.2.2. Consider two purely real Heintze groups Gi = Ni X,, R and
Go = Ny x4, R, If Gy and Go are isomorphic, then there exists A > 0 such that oy and
ABy have the same Jordan form.

The Lie algebra of a Heintze group N x, R is the direct sum of n and R (where n
is the Lie algebra of N) with the Lie bracket defined by

(X +T, Y+ 5] =[X,Y]+TaY) — Sa(X). (5.1)

In the right side of the equality (5.1) [X, Y] indicates the Lie bracket on n. We denote
this Lie algebra by n x, R.

Lemma 5.2.3. In the same hypotheses of Proposition 5.2.2 denote by n; the Lie algebra
of N; for i = 1,2. Then Gy and Gy are isomorphic if, and only if, there exist an
1somorphism v : vy — 1y, X € ny and A > 0 such that

yooq oyt — \ay = ady (5.2)
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Proof. (=) Since G; and G, are isomorphic, there exist an isomorphism
(I)an NalR%ng NQQR.

We denote v = ®|,, and (1) = X + A, with X € np and A > 0. For all Y € n; we
have
O([L,Y]) = &(n(Y)) = yoau(Y)
and
O([L,Y]) =[@(1),2(Y)] = [X + A7) =adx oy(Y) + Aaz o y(Y).
From here follows (5.2).

(<) To prove this part observe that the linear map ® : n; x,, R — ny x,, R
verifying v = ®|,, and ®(1) = X + ), is an isomorphism of Lie algebras. O

Proof of Proposition 5.2.2. By (5.2) the derivation ya;y~! — Ay is nilpotent and thus
a7 and Aas have the same positive eigenvalues \; < - -+ < Ay with the same multiplicity.
Without loss of generality we can assume that ny = ny, v =1Id and A = 1.

We prove the proposition by induction on d, the number of eigenvalues. Observe
that if d = 1, then n; must be abelian; hence ady = 0.

Now consider d > 2. We assume that the proposition is true for d — 1. Denote by
D, and D, the diagonal part of oy and a respectively, they are also derivations (see

[CS17, Section 2]).

Consider V;, W; C ny the generalized eigenspaces associated to Ay for a; and as
respectively.

Claim: V; = Wy C Z(ny), where Z(n;) is the center of the Lie algebra n;.
Let X; € V; and X; another eigenvector of D; associated to A;. Then
Dy ([Xa, Xi]) = (A + Aa)[Xa, Xi].
Since \g is the biggest eigenvalue of D; we have that [X4, X;] = 0. This implies that
X, € Z(nl).

The same can be done for Wy using Dy. By (5.2) we have ayly, = asly, and
ailw, = aslw, and as a consequence V; = W,.

Since V is invariant by «; and as and it is contained in Z(n;), we can consider on
the Lie algebra n;/V; the derivations induced by oy, as and ady, denoted by a7, @z
and ady. Observe that adx = adx, where X = X 4 V,;. We also have the identity

_1 — _2 = ady.
Since @7 and @s have positive eigenvalues A\; < --- < A\y_; with the same multiplicity,
both derivations have the same Jordan form by the induction hypotheses. Combining
this with the fact that aq|y, = as|y,, we conclude that «; and ay have the same Jordan
form. O
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It is important to have on mind that the converse of Proposition 5.2.2 is not true

(see [CS17]).

5.3 Equivalence of Orlicz cohomology on a more
general case

Our main motivation to study the Orlicz cohomology is to use it to obtain information
about the large scale geometry of Heintze groups. For this purpose the generality in
which we state Theorem 1.2.3 is enough. However, it could be interesting to have a
more general result. Thinking about the LP-case we can ask:

Question 5.3.1. Is Theorem 1.2.3 true for a complete Riemannian manifold with
bounded geometry?
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